

Spartan Superway: A Solar Powered
Automated Transportation Network

ME 195B 2018-2019
Full-Scale Controls Team

May 19th, 2019

Presented By:
Alan Philip Kalarickal (Team Lead)

Alex Krause
Justin Guro

1

Abstract

For the 2018-2019 academic school year, the full-scale controls team built wiring

schematics to operate the specified brushless DC motors and designed a PCB controller to

operate the motors wirelessly to allow for better quality control testing. We also built upon

Arduino programs from previous years to fix manual and automatic issues stated in previous

years’ reports. Lastly, we effectively implemented wireless SPI connection into the project to

improve feasibility and laid down building blocks for future controls system teams.

This was all done through looking through datasheets and understanding the setup for

each individual part in perspective to the project as a whole. We built the wiring diagrams to

wire up the motor and their motor controllers. After successfully testing the motor setup, we built

upon it by incorporating SPI communication and having the possibility of creating a wireless

system where the user can be a good distance away from the bogie and maintain control. This

was done through learning the basics of wiring schematics and PCB design in Autodesk Eagle.

Once the PCB was designed and met manufacturer specifications, we soldered all the hardware

components onto the PCB that were required for wireless communication and programmed the

controller and the bogie to communicate with one another.

The outcomes were satisfactory in relation to our goals and objectives for the semester.

The controls system was able to output at least a speed of 2 miles per hour to each motor, and

increased safety by using wireless communication to incorporate a wireless PCB controller.

Programming for autonomous driving was finished, but due to lack of time and lack of a reliable

test bed, we could not debug our program to see if it failed at any of our conditions or if our

functions even worked. Recommendations for the future are to obtain enough knowledge about

the software and hardware to be successful as a controls team, program a successful position

tracking system, and improve automation features. We also recommend to make sure to

communicate with other teams effectively and regularly, as the controls team is very reliant on

track development, bogie improvement, power sustainability, and motor efficiency. We hope that

future controls teams can learn from our mistakes this year and continually improve upon the

controls section of the project to improve the overall functionality of Spartan Superway.

2

Acknowledgments

Over the course of the 2018-2019 academic year, many people came to us to offer help

along our busy year of creating our controls system from scratch. We would first like to thank

Dr. Furman for his continued feedback into research, hardware, and software development, as

well as answering all our mechatronics based questions. We would also like to thank Daniel

Ornellas for providing us feedback on his time working on earlier versions of the control system

back in 2015 and acting as our coach throughout the academic year. Without Daniel for guidance

much of the year, we doubt we would be at the point we are at today. We would like to thank the

motor and wayside power team members for working with us consistently throughout the

academic year and being in constant contact with us when something went wrong. Finally, we

would like to thank a fellow mechanical engineering student Mirza Baig for his introduction of

Eagle software to us and showing us how the software works and telling us about the in and outs

of schematic and PCB design.

Unfortunately, the controls team was not able to procure any sponsors this semester, but

do be on the lookout for hardware and software companies that you work through that may be

interested. Sponsors help the project financially and the project would not be where it is today

without the generous donations from investors and continuous or newly acquired sponsors each

year. We may not have been able to obtain sponsors this year, but we hope future teams will be

able to gain traction and hopefully gain a sponsor that may help the controls team into an even

better future at Spartan Superway.

3

Table of Contents

Abstract 1

Acknowledgments 2

Executive Summary 6
 Introduction and Objectives 6
 Procedure and Results 6
 Conclusions and Recommendations 7

Chapter 1 9
 Introduction and Project Description 9
 Introduction 9
 Current Problems with Transportation 9
 Automated Transit Networks (ATN) 11
 Spartan Superway Project 12
 Societal Impact of Spartan Superway 12
 Spartan Superway History of Work at SJSU 13
 What to Expect in this Report 14
 Background of Full-Scale Controls Team
14
 Context of Work 14
 Full-Scale Controls Team Objectives 15
 Design Requirements and Specifications 15

Chapter 2 17
 Literature Review and Current Studies 17
 ATN Technology 17
 SPI Communication Protocol 20

Chapter 3 22
 Final Design Solution 22

 Controls Process 22
 Hub Motor Setup and Control 24
 Wireless Communication 25
 Digital-to-Analog Conversion for Motor Control 27

4

 Controller Design and Setup 30
 Major Code for Controller 33
 Major Code for Bogie 41
 Analysis/Validation/Testing 45

Chapter 4 46
 Budget 46
 Results and Discussion 47
 Conclusion and Recommendations 48

References 50

Appendices 52
 Appendix A - Arduino Code 52
 Appendix B - Bill of Materials 60
 Appendix C - Data Sheets for Components and Libraries 62

5

Table of Figures

Figure 1. Finalized wireless controller with 3D casing 7
Figure 2. Motor and motor controller setup 7
Figure 3. Traffic congestion trying to get into San Francisco 10
Figure 4. Conceptual model of Spartan Superway 12
Figure 5. West Virginia University ATN 19
Figure 6. SPI configuration between master and slave 21
Figure 7. Controls system process final design flowchart 22
Figure 8. 524N Linear Actuator 23
Figure 9. Hall Effect sensor 23
Figure 10. Hall Effect Magnet Placement on Track 23
Figure 11. Motor Controller Wiring Schematic 24
Figure 12. NRF24LO1+ Adapter Module 25
Figure 13. NRF24LO1+ Module 25
Figure 14. Connected NRF24LO1+ Transceiver Modules 26
Figure 15. How a DAC smooths out a PWM signal 27
Figure 16. MCP4725 DAC wiring setup 28
Figure 17. Controller snippet of speed control code 29
Figure 18. Bogie snippet of speed control code 29
Figure 19. Comparison of expected voltage value to actual voltage value for speed control
30
Figure 20. Wireless controller schematic 31
Figure 21. Wireless controller PCB design 32
Figure 22. Finished PCB controller with 3D printed case 33
Figure 23. Libraries and definitions for the controller code 34
Figure 24. Variables for the controller code
35
Figure 25. Setup for the controller code
36
Figure 26. Loop for the controller code 37
Figure 27. Button_Read function 38
Figure 28. Manual_Straight function 39
Figure 29. Auto_Straight function 40
Figure 30. Libraries and definitions for the bogie code 42
Figure 31. Variables and setup for the bogie code 43
Figure 32. Loop and interrupt function for the bogie code 44

6

Executive Summary

Introduction and Objectives

As the controls team, we were in charge of bringing the whole project to life. We were

tasked with creating a controls system that would control all the electrical components of the

Superway bogie system. Our goal was to integrate all of the other full-scale subteams parts and

be able to drive the integrated bogie. The motors are controller through various hardware and

motor controllers supplied by the motor team. In case of an emergency, the emergency brake

developed by the braking subteam would be deployed to avoid danger. Power for the controls

systems would provided by the wayside power team in the form of supercapacitors. Our

objectives for the year were to improve the overall safety of the system, bogie position tracking,

path switching mechanism, wireless communication between the bogie and a controller, and be

able to control the bogie in both manual or automatic modes. Spartan Superway is an

interdisciplinary project, so as the full-scale controls team, we had to learn various techniques

and tools to help integrate everyone’s parts together and control all of them efficiently.

Procedure and Results

As a team, the work was divided evenly in order to effectively reach all of our design

requirements and goals by the end of the academic year. Justin Guro was in charge of wiring

schematics, hardware evaluation, quality control of motors and PCB design. Alex Krause and

Alan Kalarickal were in charge of testing various sensors, linear actuators, and the main motor

driver code on Arduino IDE. The motor team supplied the controls team with the motors and

their controllers along with datasheets. Following the datasheets allowed us to wire everything

correctly and test the motors. For modular purposes, all the wires were attached onto molex

connectors using a crimping tool. This allowed for quick switching of any faulty wires and

7

allowed for efficient debugging of the system. For the wireless controller, we researched SPI

communication protocol and nRF24L01+ modules to understand how wireless communication

works. We had to troubleshoot how to properly use and wire the wireless transceiver modules,

but quickly overcame this issue and we were able to proceed with wireless communication. For

the controller, the PCB was manufactured by JLC PCB and was fitted into a 3D printed casing

made using the 3D printer available at Superway, as seen in Figure 1.

Figure 1. Finalized wireless controller with 3D casing

While the controller and motor driver programs of the system were being worked on, the motor

was being setup and tested. The motor team provided our team with the datasheets necessary to

complete this task, and completed the wiring schematic for the motors seen in Figure 2.

8

Figure 2. Motor and motor controller setup
Conclusion and Recommendations

As we finalized the work done on the control system for this academic year, we were able

to accomplish most of our objectives and believe to have given a good baseline for future

controls team. Wireless communication and the motors were fully operational, researched hall

effect sensors for position tracking, and introduced better safety features in case of emergency.

Modularity allowed for quick and efficient debugging and fixes if anything broke. The automatic

and manual modes can be accessed using a combination of button presses, for more complex

routing. Recommendations for future teams are to work on implementing a rotary encoder to

improve position tracking capabilities and work with the bogie integration team to get a bogie

switching mechanism implemented. Research everything that we have worked on and replicate

what we have done to ensure understanding of the whole system has been achieved. When

writing the drive bogie code, break up the code into functions for better access and

troubleshooting. PCB design can be implemented further by iterating our board to house the

proper sized components as well as future designs to reduce wiring in the system. General PCBs

can also be used if time is an issue and components can be quickly soldered on. Finally, work

closely with all the subteams and keep a track of the gantt chart. Ensure to list all parts in the bill

of materials and consistently ask questions to coaches and advisors to ensure a nothing goes

wrong.

9

CHAPTER 1

Introduction and Project Description

Introduction

Current Problems with Transportation

The health of our planet is exponentially deteriorating, and will continue to to get worse

unless significant changes are successfully implemented soon. Most people in the United States

push the blame onto the industry sector, and believe that they are the major cause for the

disastrous environmental shift. Instead, society needs to point their fingers at the transportation

industry, since according to the Environmental Protection Agency (2018), the sector that

contributes the most greenhouse gas emissions in the United States is the transportation sector at

29% of total emissions. Greenhouse gas emissions from the transportation sector primarily come

from the burning of fossil fuels to power the most common methods of transportation, such as

cars and planes. While changes in the transportation industry have helped slow down its

dependence on fossil fuels, there still has not been a significant push towards changing the way

that humans travel from one place to another.

One of the best places that exemplifies the current problems in mass transportation is the

Bay Area. With its ever growing tech industry and promise for opportunity, people from all over

the country are flooding to the area, and it is exposing the Bay Area’s weak public mass

transportation systems, such as BART and Light Rail. The Bay Area also already has to deal

with massive traffic congestion and commuting problems, as seen in Figure 3. According to a

report by INRIX Global Congestion Ranking, the Bay Area had “the 5th worst traffic congestion

in the world, and the 3rd worst congestion in the United States in 2017” (“San Francisco Bay

Area 5th Worst Traffic Congestion In The World, Study Finds, 2018). It is obvious that there are

10

serious problems in current transportation systems in dense urban areas, yet there are still no

presentable solutions.

Figure 3. Traffic congestion trying to get into San Francisco. Retrieved from
https://www.janekim.org/2018/03/12/break-the-gridlock-better-transit-and-transportation-for-everyone/

The main goal of the transportation sector needs to be getting as many cars and trucks off

the road as possible. The problem is with a continuous growth in population comes a significant

influx of vehicles in dense urban areas. The most effective way for urban areas to solve the

problems that come from an increase in vehicles is creating an efficient mass transportation

system, but at their current state, these systems are unreliable and are plagued with problems.

Crowdedness at peak hours leaves riders uncomfortable and dissuaded from continuing to use

mass transportation methods, and most systems are unable to make a profit due to high

maintenance costs (Rodrigue, 2018). With no solution in place, major complications arise very

quickly. Traffic congestion is one of the most prevalent problems, and according to Dr.

Jean-Paul Rodrigue (2018), in the 21st century, “drivers would spend about 3 times more time in

congestion as they did in the later part of the 20th century.” Residents in dense urban areas are

also subjected to increased pollution and noise, and are at a higher risk of getting into an accident

https://www.janekim.org/2018/03/12/break-the-gridlock-better-transit-and-transportation-for-everyone/

11

with drivers (National Express Transit, 2017). Drivers are even at an increased risk of getting

into an accident, considering about “94% of transportation fatalities occur on highways and

mostly involve passenger vehicle crashes (Transportation Research Board of the National

Academies, 2013). Mass transportation systems try to solve these problems, but no system has

been able to show that it is a reliable solution.

Automated Transit Networks (ATN)

Instead of trying to solve the problems with current mass transportation methods, an

entirely new method of transportation needs to be implemented. This would prevent having to

use old and outdated infrastructure to create a temporary fix to current transportation problems. It

would also allow cities to invest money into a permanent fix instead of investing in a broken

system. The most promising new transportation idea is the Automated Transit Network (ATN).

Automated Transit Networks use an automated system to transport people from station to station

in a quick and efficient manner (Ellis, Fabian, Furman, Muller, & Swenson, 2014, p. 25). The

idea of building Automated Transit Networks has only recently gained popularity, but the

concept is promising and is a very attainable solution to mass transportation problems.

In order for a transportation system to be classified as an ATN, it needs to meet certain

standards and contain certain features. Dr. Burford Furman, Lawrence Fabian, Sam Ellis, Peter

Muller, and Ron Swenson wrote a report on Automated Transit Networks and laid out the

groundwork for what determines an ATN. According to the report, Automated Transit Networks

need to feature direct origin-to-origin service, small vehicles available for the exclusive use of an

individual or small group, service available on demand, fully automated vehicles that are

available for use 24 hours a day, 7 days a week, vehicles captive to a guideway that is reserved

for their exclusive use, small guideways that are usually elevated or can be underground, and

vehicles that are able to use all guideways and stations on a fully connected network (Ellis,

Fabian, Furman, Muller, & Swenson, 2014, p. 1). Having the vehicles be able to go from one

destination to another with no stops and being able to be used by a single person or small group

is very similar to the services that Uber and Lyft provide to the public. These rideshare services

do help take cars off the road, but the fact that Automated Transit Networks are elevated and

12

available 24/7 helps tackle the major problems of traffic congestion and commute times. This,

plus the fact that these systems can be powered solely on solar energy equals a transportation

solution that is realistic, scalable, and promising.

Spartan Superway Project

The Spartan Superway project is a serious attempt at creating an example of what an

Automated Transit Network can be. The main goal of the project is to create a transportation

system that meets all the criteria of an Automated Transit Network and shows how an ATN can

solve the current problems in the transportation sector, such as pollution, safety, and congestion.

Spartan Superway takes the form of a podcar system that hangs from an elevated guideway

above the streets, as seen in Figure 4. The guideway follows the natural flow of traffic, can be

implemented above any street or freeway, and is completely solar powered. The podcars can be

called to a certain station, pick people up, and drop them off at their designated stop. This

personal rapid transport system can greatly reduce the amount of cars on the road, decreasing

traffic congestion, commuting time, and can reduce greenhouse gas emissions since it runs on

clean energy.

Figure 4. Conceptual model of Spartan Superway. Retrieved from
http://www.solarskyways.net/2017/04/summer-2017-research-experience-for.html

Societal Impact of Spartan Superway

http://www.solarskyways.net/2017/04/summer-2017-research-experience-for.html

13

The Spartan Superway team has an ambitious goal: change the way humans travel from

one point to another. While the motives behind the project have great merit, reaching that goal

could prove difficult. The transition period where old mass transportation infrastructure would be

replaced with the Superway system would have a negative impact on society. Whenever

commuting routes are altered, it creates a great inconvenience to commuters and could turn

society away from adopting the system.

While setting up the system would take years to complete and would need the patience of

the community, once complete, Superway would yield beneficial results to all who were affected

by the transition. Providing society with a simple, fast, and clean new method of transportation

would bring about great praise and improve the quality of life of residents. Less cars on the road

would lead to less traffic congestion and shorter commute times, but more importantly, society

would have more space on the ground to use. With Spartan Superway being an elevated system

using pods, cities could reduce the amount of parking garages and parking spots, freeing up

space for parks, walkways, or businesses. The rest of the world could also greatly benefit from a

system like Spartan Superway being implemented. A successful showing of how ATNs can

improve transportation would hopefully convince other parts of the world to invest in new, clean

methods of transportation to reduce its dangerous impact on our environment.

Not only will Spartan Superway improve transportation methods, but it would also

increase accessibility to transportation. Most current mass methods of transportation only reserve

small spaces to the disabled. Spartan Superway pods and stations would be designed to

accommodate all the needs of the disabled, especially people in wheelchairs, and provide the

disabled enough space since the pods are designed to only carry a couple of people. The controls

system for Superway would also be designed in a way to make it very easy to use for the public,

allowing the elderly, who would have to adjust greatly to a new method of transportation, to

easily and safely use the system. Lastly, the Superway system would be run autonomously and

be solar-powered, saving the city on operating and energy costs and would make it very cheap

for the public to use the system.

Spartan Superway History of Work at SJSU

14

The Spartan Superway project has been in the workings for the past 7 years, and with

each year comes innovations and new features that bring us closer to a true Automated Transit

Network. The 2012-2013 school year was the first year that the Spartan Superway project was

started, and the team that year created an amazing 1/12th-scale model that provided a basis for

how future half-scale and full-scale models should be designed. The 2013-2014 team was able to

successfully build a full-scale bogie and pod car that could be used to demonstrate to the public

and future students what the project was all about. Significant progress then followed during the

2014-2015 year where a full-scale track with two pathways was built to mount the full-scale

bogie and podcar to. A half-scale model was then introduced during the 2015-2016 school year,

as well as improvements towards solar power harvesting and a suspension system on the

full-scale model. The biggest thing that happened during the 2016-2017 school year was that the

1/12-scale, half-scale, and full-scale models all included more features that made them closer to

true Automated Transit Networks. Finally, last years group made significant improvements to the

solar teams mounting brackets, the full-scale model’s bogie design, and the integration of

wireless controls to the full-scale model.

What to Expect in This Report

The main objectives of this report are to explain the current status of the full-scale

controls team’s design and to setup future controls teams for success by laying the groundwork

that can be improved upon. The report will first go into more detail about what Automated

Transit Networks are and provide examples of successful implementations of Automated Transit

Networks around the world. Next, we will go over our final design for our controls system, how

we controlled the motor, and go over our programs for our wireless controller and our bogie.

Lastly, we will go over the budget our team had this year, summarize our work, and provide

recommendations for next years controls team.

Background of Full-Scale Controls Team

Context of Work

15

 The Superway Project has depended not only on its strong design work in previous

years, but has been built upon solid electrical and control systems knowledge to ensure the

automation and movement of the bogie. This pivotal step allows teams to see their designs in

action and allow for design feedback if changes need to be made. As the full-scale controls team,

we must integrate all electrical components and ensure safe and secure electrical connections and

motor control. The problem the controls team faces is to ensure that all electronics on the bogie

work for their intended design. The ability to integrate all components and ensure no faults

occur, such as failure of speed control, position tracking, current and voltage regulation, and

manual and autonomous movement, will allow the project to continue further into its design

improvements and possible integration into a small sub area of the local community for real life

testing.

Full-Scale Controls Team Objectives

When the project began, many problems were to be accounted for. Given the state of the

project from the previous team, we decided to focus on three major objectives that would affect

the success of the project as a whole this year. The three objectives were:

● The control and wiring of the brushless DC motors(BLDC)

● Position Tracking using encoders and hall effect sensors

● Manual and Automation of the bogie

By focusing and prioritizing these objectives the team will achieve a baseline for controlling the

bogie system and ensuring main design requirements and specifications are met before diving

deeper into smaller objectives such as optimizing feedback, calculating more efficient setups,

and diving into deeper research on complex control systems as to portray a real life integration.

Design Requirements and Specifications

The Spartan Superway system design requirements for the 2018-2019 Full-Scale Controls

team are based upon plausible specifications for what is it be produced by the end of the

semester. These design requirements are not to portray a real life scenario and have been based

upon the mock-model that will be produced at the end of the academic year. In the Appendix will

16

be listed real life design requirements and specifications that can be used to help with deciding

the design requirements and specifications for future teams. For the following 2018-2019

academic year, the controls team stated the following design requirements and specifications that

are to be met by the end of the year. The bogie control system shall do all of the following:

● The bogie shall be able to reach a speed of 2 miles per hour and cruise until a turn or stop

is approaching

● The bogie shall keep track of its position to ensure it does not make a wrong turn or fall

of the track. This also ensures the bogie will not run past a station and will be used as

markers to break into or accelerate out of an oncoming station.

● The bogie can be manually operated to allow for debugging, design verification, and

quality control.

● The bogie can be autonomously operated under normal load conditions

● The third rail actuators will be control so they may switch positions within a reasonable

time to ensure the bogie does not make a wrong turn

● Ensure all components from Wayside Power, Motor team, and Brake team are integrated

and can be controlled manually and autonomously such as voltage and current control,

speed control, and emergency brake integration.

These design specifications and requirements uphold the quality and safety of the project and

ensure that safety measures as well as efficiency have been accounted for in the final design of

our control system.

17

CHAPTER 2

Literature Review and Current Studies

ATN Technology

Automated Transit Networks (ATN) are a unique form of transportation which have

special features that traditional forms of transportation lack. The first concept came around the

1950’s, and since then there are five main installments around that world of Automated Transit

Networks that shows promise. These five are located in Morgantown in West Virginia, Heathrow

Airport in London, Masdar City in Abu Dhabi, Rotterdam in the Netherlands, and Suncheon Bay

in South Korea. According to a study conducted by Mineta Transportation Institute, there are

seven unique features ATNs possess, and they are:

1. “Direct origin-to-destination service with no need to transfer or stop at intermediate

stations

2. Small vehicles available for the exclusive use of an individual or small group traveling

together by choice

3. Service available on demand by the user rather than on fixed schedules

4. Fully automated vehicles (no human drivers) that can be available for use 24 hours a day,

7 days a week

5. Vehicles captive to a guideway that is reserved for their exclusive use

6. Small guideways (narrow and light relative to light rail transit or LRT and bus rapid

transit or BRT) that are usually elevated but that also can be at or near ground level or

underground

7. Vehicles able to use all guideways and stations on a fully connected network”

(Ellis, Fabian, Furman, Muller, & Swenson, 2014, p. 1)

18

With these features, many of the problems faced by traditional forms of transportation

can be reduced or even eliminated. The main problems include environmental pollution,

congestion, accidents, parking, safety, and wasted energy. With the use of solar power, we are

relying on clean and renewable forms of energy instead of relying on fossil fuels. According to

the United States Environmental Protection Agency, “In the United States, greenhouse gas

emissions caused by human activities increased by 7 percent from 1990 to 2014” (EPA, 2017).

With the help of a solar powered ATN, which Spartan Superway is focused on, the transportation

sector can start reducing their carbon footprint. By building the guideways above land, it allows

there to be more space on the ground and can allow cities to more efficiently use their space.

These guideways will stretch across cities and towns making it widely accessible to many

people. With this setup, people can use the land beneath the guideway as places for people to

interact like markets, parks or even shopping centers. If cities switch to ATNs, the amount of

vehicles on the streets will be heavily reduced and thereby reduce traffic, parking problems and

accidents. With the automated features of an ATN, riders can request a podcar in a matter of

minutes and takes people to their destinations without any stops or transfers. This design aims for

a direct origin-to-destination service, which can accommodate up to 5 passengers. The control

system for ATNs will be optimized for the times when it is traveling and when it is at rest,

further reducing the amount of wasted energy.

As discussed earlier, even though ATN’s are new and promising form of transportation,

there are only five installments around the world which fully embody all the features it has to

offer. They are Morgantown PRT, ParkShuttle, Masdar PRT, Heathrow T5, and Skycube. The

Morgantown PRT (1975), as seen in Figure 5, connects all three campus of West Virginia

University along with the downtown area within a eight mile track. Each vehicle used for travel

can accommodate up to 20 people with eight seats included. According to the West Virginia

University, with a speed of 30 mph, these vehicles carry “15,000 people ride the PRT during the

school year every day” (West Virginia University). While operation, there are three modes that

the vehicles run on: demand, schedule, and circulation. ‘Demand’ mode is used during non-peak

hours of the day, where it takes individuals to their desired location. While on peak-demand

19

situation, it switches from ‘demand’ to either ‘schedule’ or ‘circulating’ mode to accommodate

the demands for various people traveling in one pod.

Figure 5. West Virginia University ATN. Retrieved from
http://www.solarskyways.net/2017/04/summer-2017-research-experience-for.html

The ParkShuttle in Netherlands is ATN system which was started in 1999 which connects

business park Rivium and the residential area Fascinatio as well as business park Brainpark III

with the metro and bus station Kralingse Zoom. “1.8km of (dual-lane) guideway (at grade) with

6 vehicles connecting 5 stations” (ATRA). There are no emissions associated with this transport

because all the energy for this system is stored in lead acid batteries which has a range of 75+

km. It is similar to a driverless bus and guided on the track with the help of magnets on the road.

The vehicles can hold up to 20 passengers with 480 passenger per hour per direction.

The Masdar PRT is a prime example for ATN’s which is utilized since 2010 in the

carbon neutral, car free city of Masdar City, Abu Dhabi (2getthere, Masdar). This system operate

http://www.solarskyways.net/2017/04/summer-2017-research-experience-for.html

20

for 18 hours a day between two stations on track which is 1.4 km long. There are 10 on-demand

vehicles available for passengers to use with rechargeable lithium ion batteries and magnetic

inlaid guideway strips to keep it on track. Even though this is an ATN, due to its single route

system and function, this operates more like a shuttle service.

The ULTra (Urban Light Transit) PRT system in Terminal 5 of the Heathrow airport in

London runs between terminals and business passenger car park 2.4 miles away (ARUP). This

system includes 18 podes that runs over the largest ascended guideway. This system uses rubber

tires to run on an open guideway network. This give the bogie a reduction in weight, quick to

assemble it together and a low cost of maintenance.

Skycube is one the last ATN to exist today. Skycube runs in the Nature Shuttle Park in

Suncheon Bay of South Korea. This PRT connects the Suncheon “Dream Bridge” with the

Suncheon Bay Ecological Park. According to Advanced Transit Association, “ 4.6km of

elevated, bi-directional guideway, 40 vehicles with seating capacity for 6 to 9 passengers per car

plus accompanying luggage/baby buggies etc. The system is fully compliant to international Rail

Vehicle Accessibility Regulations (RVAR) with level access and wide, bi-parting doors allowing

ease of access for all passengers including the mobility impaired” (ATRA). This single lane

guided system operates like a shuttle service.

SPI Communication Protocol

Serial Peripheral Interface (SPI) communication is widely used for microcontrollers and

peripheral ICs send and receive data between two systems over short distances. For SPI, there

would be one master controller and any number of slave modules. There are 4 main lines that are

common to all modules and they are:

1. SCK: Serial Clock; For synchronized data transmission, clock pulses are

generated by the master.

2. MISO: Master In Slave Out; the master reads data from the slave.

3. MOSI: Master Out Slave In; the slave reads from the master.

4. SS: Slave Select; this pin is used to enable or disable specific slaves to send or

receive data.

21

Figure 6. SPI configuration between master and slave

According to the Circuits Basics, “One unique benefit of SPI is the fact that data can be

transferred without interruption. Any number of bits can be sent or received in a continuous

stream” (Circuit Basic, 2018). SPI is a bi-directional communication protocol, so we can send

data from the master to the slave and vice versa. Some advantages the circuit basics website talks

about are:

1. “No start and stop bits, so the data can be streamed continuously without interruption

2. No complicated slave addressing system like I2C

3. Higher data transfer rate than I2C (almost twice as fast)

4. Separate MISO and MOSI lines, so data can be sent and received at the same time”

(Circuit Basic, 2018)

With these features, SPI was the best candidate for wireless communication. This research

allowed us to follow through with programming the wireless communication parts of our major

programs using this communication protocol.

22

CHAPTER 3

Final Design Solution
Controls Process

Before we could start constructing our system, we first needed to figure out what process

we needed to go through when presenting our system. Our system process path is represented in

the flowchart seen in Figure 7.

Figure 7. Controls system process final design flowchart

As a safety precaution, we first want to check and make sure all the electrical components

in the system are working. First, we will check if the linear actuators, as seen in Figure 8, work

to ensure that the path selection process works. Second, we will check if the hall effect sensors,

as seen in Figure 9, work to ensure that the position tracking system works. Third, we will make

sure that the motor and the motor controller are working and talking to each other in the

appropriate manner.

23

Figure 8. 524N Linear Actuator Figure 9. Hall Effect sensor
Then, we will have the user choose the path they want to travel, either turning left or going

straight. Next, we will start the motors in either manual or automatic mode. In manual mode, the

user can control the speed of the bogie using a potentiometer. In automatic mode, position

tracking will determine the speed of the bogie. In order to track the position of the bogie, we will

be placing magnets on the track in the three spots seen in Figure 10, and then a hall effect sensor

would pass the magnets as it travels and send a signal to our controller alerting the user where

the bogie is. Once the bogie is at the end of the track, we will flip the brake and reverse switches

to stop the bogie and have it return back to its starting location.

Figure 10. Hall Effect Magnet Placement on Track

24

Hub Motor Setup and Control

To begin controlling the motor, the Brushless DC motors (BLDC) had to be wired up per

manufacturer specification to BLDC motor controllers. The motors, motor controllers and all

essential adapters and were provided by the full-scale motor team. The schematic for the wiring

setup is displayed in Figure 11. The schematic can also be found in the controller manual in the

repository along with any components found in the schematic.

Figure 11. Motor Controller Wiring Schematic (Larger image can be found in Appendix C)
When wiring the motors and motor controllers, various terminal connectors for small

gauge wires were needed to connect high current and voltage connections. Other larger gauge

wires were crimped using a crimping tool to install molex connector pins. To avoid burning

wires and short circuits, the small gauge wire was used for heavier currents and voltage. Once

wiring has been completed and connections have been secured, the circuit is turned on with a 48

volt power supply. With the circuit powered on, we are able to set the controller pins to their

proper settings. From the wiring diagram there are two analog signal receivers. These correspond

to the brake and throttle analog outputs. These analog outputs can be controlled by a simple

25

variable potentiometer. With the potentiometers wired up, we can now vary the speed of the

motors. By increasing the value of the potentiometer, the throttle begins to increase on a range of

0 to 5 volts. From reading the potentiometer, we noticed the motor will not begin to start until the

throttle has received at least a 1 volt analog signal. Afterwords, as the signal is increased the

motor continues to speed up until it a full 5 volts is read from the potentiometer. The same goes

for the brake analog signal but this is not very reliable and does not work most of the time during

our test runs. The next step was setting up all the switches. The switches included in the motor

controller schematic control the brake, throttle acceleration, and reverse polarity. These were

controlled using single pole single throw switches (SPST). The brake switch allows us to

instantly stop the motors if needed, immediately cutting the signal to the motors and stopping

rotation. If the brake switch is switched back on accidentally, the motor controller does not allow

the motor to restart until the throttle pins reads 0 voltage as an added safety feature. This assures

if there is any remaining voltage in the system when the brake is turned back on, that the motors

will remain off.

Wireless Communication
The most difficult part of this year was figuring out how to have two Arduinos talk to

each other wirelessly. The main goal of this section to to explain how the wireless

communication works and how to avoid common problems that we ran into. The wireless

communication hardware that we worked with were NRF24LO1+ transceiver modules.

However, there are two different types of these chips. Figure 12 shows the adapter module and

Figure 13 shows just a module.

Figure 12. NRF24LO1+ Adapter Module Figure 13. NRF24LO1+ Module

26

The best way to learn about how these modules work, we would recommend following

the instructions at https://howtomechatronics.com/tutorials/arduino/arduino-wireless-communica

tion-nrf24lo1-tutorial/. It explains how to wire the transceiver modules to your Arduino and how

to write a program to learn how they work. The tutorial uses the module seen in Figure 13, and

tells the reader to plug the VCC port into the 3.3V. When we tried to do this and run the sample

program, it would not work. The serial monitor in Arduino IDE would print weird symbols and

number, and it took us a month to figure out the problem. The problem was that with the 3.3V,

there wasn’t enough current to send a steady signal from one Arduino to another. Other tutorial

websites also explained to not plug the VCC into the 5V pin onto the Arduino, otherwise the

module could be fried, so we were confused and stuck.

We then bought the adapter module, which has a 3.3V regulator on it. This allows us to

plug the VCC into the 5V pin on the Arduino and prevent the board from getting fried. We

attached the two types of modules together, as seen in Figure 14, plugged in VCC into the 5V pin

on the Arduino, ran the sample program, and it finally worked.

Figure 14. Connected NRF24LO1+ Transceiver Modules

https://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutorial/

27

Digital-to-Analog Conversion for Motor Control

Once we were able to properly use these modules and send data successfully, the next

step was to figure out how to control the speed of the motor wirelessly. The motors that we are

using have a throttle control that goes into the motor controller. See the motor datasheet to see

which wire it is. A 0 to 5 volt signal is sent into the motor controller through this line, and is

normally controlled by a potentiometer. The more voltage sent into the controller, the faster the

motor goes. The problem is that you can’t just send an analog signal from the Arduino into the

controller because the motor controller would not be able to read a PWM signal. Instead, we

needed to smooth out the signal, as seen in Figure 15, so the motor controller could receive a

constant voltage reading.

Figure 15. How a DAC smooths out a PWM signal. Retrieved from
https://e2e.ti.com/blogs_/b/msp430blog/archive/2018/09/27/designing-an-audio-playback-

Application-with-the-msp430-smart-analog-combo

To do this, we used an MCP4725 digital-to-analog converter to act as a low-pass filter and

smooth out the signal, as seen in Figure 16.

https://e2e.ti.com/blogs_/b/msp430blog/archive/2018/09/27/designing-an-audio-playback-application-with-the-msp430-smart-analog-combo
https://e2e.ti.com/blogs_/b/msp430blog/archive/2018/09/27/designing-an-audio-playback-application-with-the-msp430-smart-analog-combo

28

Figure 16. MCP4725 DAC wiring setup

This DAC works by receiving 5 volts from the arduino and then will output a desired voltage

between 0 and 5 volts. The VCC pin plugs into the 5V Arduino pin, the right GND pin plugs into

the GND Arduino pin, the SDA pin plugs into pin 20 on the Arduino, the SCL pin plugs into pin

21 on the Arduino, the left side GND pin plugs into the GND Arduino pin, and the OUT pin

connects to the throttle wire going into the motor controller. To check and make sure that the

DAC is working properly, upload the code in Appendix A named MCP4725 Test Code. Then

place the ground lead from a multimeter to the left GND pin from the DAC, and place the

positive lead from the multimeter to the OUT pin from the DAC. You should see the voltage

jump from 0 volts to 5 volts with 3 second intervals.

Once the DAC is working, we can combine the wireless communication code with the

DAC code and control the speed of the bogie wirelessly. In the controller program, you read the

value of the potentiometer that controls the speed of the motor, and then map that value from 0 to

1023 from the potentiometer to 0 to 4095 for the dac. We map the potentiometer value to values

between 0 to 4095 because from the MCP4725 Test Code, you can see that setting the dac

voltage to 0 sends 0 volts into the motor controller, and setting the dac voltage to 4095 sends 5

volts into the motor controller. Setting the potentiometer to 0 will send 0 volts into the motor

29

controller, and setting the potentiometer to 1023 will send 5 volts into the motor controller. Once

you have that dac output value, you can send the value to the bogie program, which will read the

dac value and then set the output voltage for the dac to control the speed of the motor. The main

parts of the program for this process can be seen in Figure 17 for the controller side, and Figure

18 for the bogie side.

Figure 17. Controller snippet of speed control code.

Figure 18. Bogie snippet of speed control code.
We setup the wireless controller, which will be talked about in the next section, to display

the voltage being sent into the motor controller, and as you can see in Figure 19, the actual

voltage being sent into the motor controller is very close to our program’s expected voltage

output value.

30

Figure 19. Comparison of expected voltage value to actual voltage value for speed control.

Controller Design and Setup

To ensure safety during testing however, we prefered to try and run the bogie wirelessly

using a wireless controller. This wireless controller would be capable of sending a wireless

signal to the motors and control them remotely to avoid high voltage and heavy equipment. The

controller would be able to control the bogie manually and autonomously given a certain

input.The wireless communication will be explained later in this report. To begin designing a

wireless controller, we had to create a wiring schematic and choose what parts were to go on the

controller. We decided to include momentary button switches for autonomous control and

integration of the emergency brake, two potentiometers for brake and throttle analog, an Arduino

MEGA, and a 16 by 2 LCD display to display feedback from the system. For the controller to

work, the parts would have to be mounted onto a printed circuit board (PCB). Using Autodesk

Eagle, we were able to design the wiring schematic and design the PCB. After a week of getting

used to the new software, we came up with a wiring schematic for the controller which is

displayed below.

31

Figure 20. Wireless Controller Schematic

Once the schematic was finished, we then exported all the components to Eagle’s PCB

feature. Once the components were placed onto the board in the positions we wanted them, we

then routed all the pins to their proper pinouts. Autorouter in Eagle is not very efficient and puts

routes to close to each other. Manufactures may need about 3 to 7 millimeters in space between

routes and vias and autorouter does not account for that. When purchasing a PCB, manufacturing

is a big factor. The better the machining was, the more confident we were in placing our routes.

The finished PCB is pictured below.

32

Figure 21. Wireless Controller PCB design

With the PCB design finished we sent of the files to be manufactured through the website

JLCPCB which manufactures all types of PCBs’ and was recommended to us by our controls

team coach. Once the files were uploaded and the order was completed, processing began and

the boards came in with about a 1 to 2 week lead time. The fully designed PCB is displayed

below.

We then soldered all the components onto the board, as seen in Figure 22, and began

testing. In order to send a proper signal we had to convert the pulse width modulation signal the

Arduino outputs to a digital to analog converter (DAC) to obtain the 0 to 5 voltage required to

start the motor. This is gone over more in detail in the wireless communication section of the

report. With the motors now running wirelessly, we moved into autonomous controls where now

we begin to program autonomous functions to control the bogie with only a couple of inputs. For

this please refer to the programming section of the report. With the motor setup now fully

33

operational, we can now work on the process of controlling the speed of the motors to cruise at a

specific speed. Due to time constraints we were not able to obtain graphical data of the

acceleration and speed of the motors and possibly can be done next academic year to map the

voltage to velocity and program set values for autonomous control. This concludes the electrical

and most of the hardware of the motor control setup. The next sections will discuss wireless SPI

communication and the Arduino code itself.

Figure 22. Finished PCB controller with 3D printed case

Major Code for Controller

The controller code is the brain of the whole system. It will run the main code for the

controller and decide on what kind of voltage should be sent to the DAC. The input needed for

this decision is the hall effect count from the bogie. The controller was made of PCB boards

which we designed and manufactured by JLC PCB, a LCD display, 2 potentiometers, 4 switches

with 4 pull-up resistor, a nRF24L01+ module with the adapter for it, and an Arduino Mega. The

34

code for the controller was much longer than the code for the bogie because all of the work done

here for controlling the bogie.

Figure 23. Libraries and definitions for the controller code

The main components on the PCB which needed libraries were the nRF24L01+ wireless

communication module and the LCD screens which had special functions that needed to be

executed in order for it to work. The libraries for the nRF24L01+ and the LCD display were not

included in the Arduino IDE, so we had to download some of the libraries from the internet.

Both of them were found on GitHub for free download and installing the zip file into Arduino

was easy. Refer the links in Appendix C for the libraries. The SPI library is for the SPI

communication protocol files that are need for the wireless communication to function properly.

Most of the pins on the Arduino were used by all the components on the PCB. The LCD

screen required the most amount of pins. There are eight pins for data from D0 to D7, where the

first 4 pins are only optional. We made the LCD display work with pins D4 to D7 because we do

not need all the 8 lines for our application. For the wireless communication module, we used all

the pins except for the IRQ pin, which was used the attachinterrupt function of the arduino, it is

mainly used to put the system to sleep until some data is being received . For our use, we didn’t

35

need it to work in the background, most of the wireless data transmission happened real time

whenever we needed and our arduino will be on at all times. Refer the datasheets below for the

pin layouts. We installed 4 buttons on the controller but due to the problem with the nRF24L01+

where it does not recognize the fourth button, we had to go with 3 buttons instead.

Figure 24. Variables for the controller code

For the program to work the way it is, we need to store important values into variables.

We had to read all the button presses so that different commands can be done by the bogie. The

values for the DAC are calculated on the controller and sent to the bogie. We used the data type

‘uint32_t’ because it guarantees that it will be a unsigned 32 bit resolution from 0 to (232 - 1).

The DAC value changes with the potentiometer value within in different functions depending on

whether it is in manual or automatic mode. From the DAC value, we have to compare it to 5V so

that a Arduino can control using the voltage supplied by it. This is the variable called volt_count

has to be a floating point value because it needs to read all the small variations from the

potentiometer so that there would not be any jumps in voltage. Finally the functions that we

implemented in the code has to be declared with data type of the variables for input before

starting the code so that the Arduino knows they are functions. The int values within the

‘button_read’ functions are for the input values that are needed for the function to work properly.

We will use the e_brake_pin variable to control the E-brake that the articulation and braking

team created.

36

Figure 25. Setup for the controller code

For the setup, we needed to start the LCD screen and set the buttons to input or output

depending on what needs to be read. The LCD screen will always show the Motor Voltage so

that we can monitor it if anything goes wrong. The button pins are set to input so that it reads all

the button presses on the controller. The e_brake_pin is always set to high, which means the

electro-magnets are engaged. It will be set to low in the cause when the E-brake is released.

Finally we need to setup the the open channels for the data to flow between the bogie and the

controller. If there are two addresses that means it is setup to be a bi-directional flow of data.

One will be set to read from the bogie and the other one will be used to write commands to the

bogie.

37

Figure 26. Loop for the controller code

For the loop, we basically read each element which is connected up to the controller first.

Even though we specified that the E-brake will be high in the setup, we write it to be high again

just so we reset the it when it starts looping. After that the program goes into the ‘button_read’

function, where it decided between automatic or manual modes to control the bogie. I will

covering how the function works in the next section. Within this function and depending on the

combination of button presses, we have other functions which would calculate the appropriate

values for the DAC. Values from the function will be sent back to the main program to be

mapped between the potentiometer, the DAC and operating voltage of the Arduino so that the

LCD display can display the voltage being sent. First it is being mapped between the

potentiometer and the DAC. The range for the potentiometer is from 0 - 1023, when it is 0, there

will be no current flowing through it whereas, if it is at 1023, it mimics a fully closed circuit

where current easily flows through it. The DAC that we are using has a 12 bit resolution, so the

range for this is from 0 - 4095. After mapping it between the potentiometer and the DAC, we had

to map it between the DAC and the operating voltage of the Arduino, which from 0V - 5V. This

is the value being displayed on the LCD display.

38

Figure 27. Button_Read function
For the button_read function, we need three main input from the controller to make it

work and they are the the button_pin_status variables. After that it is ran through a if - else

condition. Before every condition, the DAC voltage is set to zero so that it reset for each

command. If button 1 and 2 are pressed, then it will run the first condition, it will prints ‘Manual:

going straight’ on the LCD display and jumps into the maunal_straight function. If buttons 1 and

3 are pressed, then it will run the second condition, it will prints ‘Automatic: going straight’ on

the LCD display and jumps into the auto_straight function. If no buttons are pressed, it will

display ‘Select Mode’ on the LCD display until some combination of buttons are pressed. The

idea of pressing buttons in combination is so that no one makes any accidental presses and only

people who made the code will be able to operate it.

39

Figure 28. Manual_Straight function
The manual_straight function is when buttons 1 and 2 are pressed. This is when the we

travel along the straight part of the track controlled by the potentiometer. For this we need to

read values from the potentiometer and the buttons. We have two conditions to satisfy here, one

for when something happens during the travel and we need to stop it - so by pressing all three

buttons at once, we set the DAC voltage to zero and releases the emergency brake. If all three

buttons are not pressed then it will map the value between the potentiometer and the DAC. This

40

value is then sent to the bogie which makes it moves. After setting it to a comfortable speed, the

hall-effect count value from the bogie is sent to the controller so that it can make better decisions

on when to stop or reset back to its initial state. The LCD display will print out where the bogie

is using the hall-effect sensor. When the count hits 4, that means it reached its initial starting

point. For the motors to brake and reverse we have implemented 2 switch for each action. When

the bogie reaches the end of the track, we would zero out the potentiometer in order to stop and

then we would manually go and turn the brake on first and then the reverse. After that we will

use the potentiometer again to run it back to the starting point. When hall - effect sensor reads 4,

it goes back to the button_read function. The value calculated for the DAC voltage is sent back

to the loop so that the LCD display can print it out.

Figure 29. Auto_Straight function

41

The auto_straight function is activated when buttons 1 and 3 are pressed. The main

condition for setting the speed is by comparing the DAC voltage to its maximum value. If the

DAC voltage is smaller than 4095 then it will add 819, which is 1V for the DAC, each time to

ramp up the speed from 0 RPM slowly. After it reached a desired value, we send it to the bogie

to be read. Then scanning for the hall_effect sensor is the next important task to perform. The

hall effect count has to reset before the bogie starts moving. When the right_hall_counter reads 0

that means it is at the starting position, from here it perform the calculate needed to set the DAC

voltage so that the bogie starts moving. When the right_hall_counter reads 2, that mean it needs

to stop because it is reaching the end of the track. So we set the DAC voltage to 0 to bring the

bogie to a stop. We implemented a big delay so that we have each time to go over to the bogie in

order to manually turn the brake and reverse switches on. After that, it will continue to move

with the previously calculated DAC voltage until it reads 5 on the right_hall_counter. When it

reads 5, that means the bogie return back to its starting position. Therefore we set the DAC

voltage to 0 to stop it. A DAC value is sent back to the main loop to be displayed by the LCD

display.

Major Code for Bogie

The bogie moves because of the inputs from the controller that the team designs. The

bogie does not have much processing to do within the code. It basically just writes the DAC

value sent from the controller onto the bogie and that value controls how much voltage to be sent

to the motors. The components on the bogie consists of the nRF24L01+ with its adapter, the

MCP4725 DAC, a hall effect sensor on the right side of the bogie, and an Arduino Mega, which

is connected to the motor controller. Refer the data sheet given in the appendix for pin layouts.

42

Figure 30. Libraries and definitions for the bogie code

Some parts of the code are similar to the controller code. The main components that

needed libraries were the nRF24L01+ and the MCP4725 DAC. The links for these libraries are

available in the appendix of this report. Other than the SPI communication protocol, MCP4725

DAC requires I2C communication protocol for data transfer. So we have to include the wire

library for I2C communication, this is already built into the Arduino IDE.

In terms of definitions, we need one pin for the emergency brake and another for the hall

effect sensor. For the hall effect sensor, we need to set a variable, called state, as low as default.

When it reads a magnetic field, a voltage will be created and the state value will change to high.

We set this as a volatile byte cause the variable ‘state’ will change from high to low or low to

high depending on the position of the magnetic field with respect to the hall effect sensor. In

order for it to work, a pull-up resistor has to be placed between the Arduino pin and the output.

Finally we need to set the CE and CSN pins for the nRF24L01+, just like we did for the

controller.

43

Figure 31. Variables and setup for the bogie code
Similar to the controller code, we need to setup open channels for the nRF24L01+. We

have 2 addresses that will act as a bi-directional data transfer between the bogie and the

controller. The DAC has to be initialized using the ‘uint32_t’, because we need a 32-bit

resolution for it work. Finally, a variable for the right hall effect sensor has to be made so that

each variation in voltage would be recorded. In terms of setup, we have the emergency pin is

always set to high so that the electromagnets are engaged. We set the hall effect pin to

‘input_pullup’ so that the arduino can read all the voltage from it. After that we use the

attachinterrupt command, in order to read the hall effect in the background while the rest of the

program is being ran. For this command there are three parameters to be fulfilled - the specific

pin that would be interrupted to read data, an ISR function and the Mode. The first one is figure

out which pin will be used to read data from the sensor. When a voltage is detected it will stop

the main loop and head to the function that needs to be read. When an interrupt occurs, the code

44

skips to the function that we designed to be for that sensor. Finally, mode has to be chosen to see

what kind of data we need to be read. There are 4 options and they are low, change, rising and

falling. In our case, when the hall effect sensor reaches the magnet, it will produce a voltage and

it moves to the function from the main code. At this point, even though the sensor read high, we

did not start counting yet. When it moves past the magnet and the sensor goes from high to low,

then the counting function will add 1 to the count. As in the previous code, we had to setup

which addresses are used for reading and writing data to and from the bogie and the controller

wirelessly. When the DAC uses I2C as the communication protocol, an address has to chosen

like the nRF24L01+, in order to send the right data at the right time. For our DAC model, the

address is set to 0x60.

Figure 32. Loop and interrupt function for bogie code

The loop for the bogie is really simple. The only task it has to perform is to write data

from the controller, mainly the DAC voltage value in order to run the motors. Initially we set it

to be zero but by pressing buttons or by turning the potentiometer on the controller, the value

45

changes accordingly. When the wireless communication module is available, it will write values

into the appropriate variables. Using the syntax dac.setVoltage(dac_value, false), we are able to

set that as the voltage for the DAC. The final part to the code is the interrupt function. As

discussed earlier, when a signal is detected the whole code pauses and runs this function called

positiondetect_right(). When the bogie moves past the magnet and voltage goes from high to

low, then the right_hall_counter variable adds one to it. Each time this happens, the function

adds one and at each value corresponds to some condition within the controller program that has

to be satisfied. After this, we had to send the data back to the controller so that it can perform

more tasks.

Analysis/Validation/Testing

This semester, we were unable to test our system as a whole considering the bogie was

not fully put together and the track was not fully put together. We could not validate if our

automatic mode worked on our controller and we could not test to make sure the position

tracking system code worked. However, what we could test and validate was that the motors and

motor controllers worked properly, the manual mode program worked, and the wireless

communication worked. We wrote a simpler and smaller program to make sure that the manual

mode worked on the controller just so that we could present to the class and our guests how the

controller and motors worked. We also wrote a small program to make sure that the hall effect

sensors worked, we just couldn’t test if they would work on the track itself. Overall, what we

could test and validate was able to work properly. Hopefully next year, the entire controls system

will be able to be tested and troubleshooted.

46

CHAPTER 4

Budget

The team had many revisions of the Bill of Material google sheets to get to the final total

of expenses. Most of the purchase were contributed by all the team members and the AS

government reimbursed it us. Our initial budget that we estimated was $567.91 with all the

essentials needed to get the project started. We were meeting our estimated budget till half

through the second semester but as we ran into trouble with the motors, the wireless

communication modules and motor controllers. We had to buy new modules, wires and other

miscellaneous parts to make sure all the components to work together. In the end, our budget

came out to be $789.30. The components that we bought were put to good use on the bogie and

the controller. Most of the parts came in a kit with different configurations, like resistors, diodes,

capacitors, heat shrink tubes, wires, wire connectors, ring terminals and linear actuators. The

extras can be used by next years team so that when they start their project, they will have all the

necessary equipment to start the project. All the extra parts are stored in the cabinets behind the

work area.

Even though our budget was high compared to other teams, we required components that

were essential to start working on the project. We bought whatever was necessary at the time so

that there would be no trouble moving ahead with the project. Before starting the project, the

team salvaged parts from previous years and most of them were still usable. So that definitely

helped move thing along in the beginning. Prof. Furman even gave us hall effect sensors and a

rotary encoder for us to test and use. With the help of the professor and the parts available at

superway, we brought our budget down by around $100. The detailed Bill of Materials is

available in the appendix below and also on the Spartan Superway archive. Most of our

purchases were done through Amazon or Digikey. With Amazon’s one to two day shipping, we

were able to get all the parts as soon as possible. The PCB that Justin created was sent to JLC

PCB, they gave us a first time customer discount of about $20. We used that money to pay for

expedited shipping so that we would have the controller by evaluation day.

47

Results and Discussion

The work done by the full-scale controls team this academic year was a big step in the

right direction. After getting the motors to run successfully and implementing wireless control

technology in the form of a wireless PCB controller sets up next years controls team with a lot to

build upon. With baselines set among all the main objectives set forth in the beginning of the

academic year, future controls teams will be able to take our work and build upon in and create

possibly a more advanced system that will substantially improve the project as a whole. The

work done this year by us will allow future teams to get off the ground earlier, test parts and

work more on the design process by being able to iterate multiple designs within a year instead

of working on one design and hoping it will work at the end. With the control of the motors fully

operational, once a track is permanently built, real life testing can be done versus all simulation

work. Simulation work provides a great baseline and what to expect but testing the designs in

real time will give more useful information. This will encourage more rapid prototyping amongst

teams so they can test their designs and look to continuously build upon the project and use their

time as efficiently as possible.

At this point in time, it will allow next year’s team to get a great head start into what they

do and don’t need to do. Learning how to create PCB will allow next years team to develop

better mounts for hardware components and fit them into smaller spaces on the drive train. The

existing Arduino code does not have to be written from scratch and can be built upon to improve

manual and autonomous control of the bogie along with how to setup wireless SPI connection

which will allow them to work with ideas outside of huge wire nests. Overall, we believe we

have placed a great foundation for future teams and provided the building blocks for which they

can improve Spartan Superway and get it closer to becoming part of our everyday lives. We

encourage future teams to learn, grow, and expand on what we have provided them and urge

them to learn as much as they can about control systems, coding, and electrical engineering. As

mechanical engineers, we are not well versed in software and hardware, but a few weeks of

understanding and learning what we have done, the software and hardware we have used, and the

technical skills we have learned will allow for Spartan Superway to grow for the foreseeable

future.

48

Conclusion and Recommendations

Reflecting on the work the team completed over the last year, we can confidently say that

our project was a success and we were able to meet all of our design specifications. The most

substantial goal was being able to control the bogie remotely, which we were able to do

consistently. We were also able to create a remote control to house all the components we

needed to control the bogie remotely. Since the track wasn’t complete, we were unfortunately

unable to test and see if the motors were able to meet their expected design specifications, but we

are still confident that the motors would be able to move the bogie throughout the track and

reach the 2 mph goal. We also were not confident enough with our program to test and see if our

position tracking system would work, but we have the hall effect sensors working properly so we

just need more time to test that part of our code. Besides these setbacks, our controls system was

able to be put together and work in the way that we wanted it to.

Over the course of the year, while we were responsible for different aspects of the

project, we all shared what we learned and were able to accumulate skills that will be directly

applicable to our lives as engineers. The team experienced problems with project timing and

procrastination, so we learned how important it is to make an accurate Gantt chart and stick with

it throughout the course of the project. We also learned how important cross-team

communication is, considering our group needed to incorporate electrical components from

multiple teams. In terms of technical skills, we learned about sensor and linear actuator

integration into systems, PCB design, and brushless DC motors. Lastly, a lot of work went into

the programming of our system, so we learned how important proper formatting and commenting

is so that troubleshooting the program can be a simpler process with organized code.

While a lot of work was done this year, there are some things that we were unable to

complete, mainly due to time constraints. For next year’s full-scale controls team, we

recommend doing a lot of research on the specific components that are or will be in the final

system during the first semester of senior project. This will make the process of putting the

system together and programming the bogie and controller simpler during the second semester.

We ran into a lot of problems with the wireless communication because we did not do enough

research on the modules itself. In terms of what to improve upon next semester, we recommend

49

improving the position tracking system and making it more accurate by including a rotary

encoder. We also recommend programming more system diagnostics in the major codes so the

user knows more information about the system. The last recommendation would be to use as

much of our work as possible. Our team wanted to start from scratch, but that just gave us a

bigger workload and costed us more time when we could have just studied what last year’s team

did to improve the system. The controls teams are making great progress and getting a lot of

work done each year, and it’s amazing to see our work helping to get Superway closer to a

complete Automated Transit Network.

50

References

“Advanced Transit - Stadsregio Rotterdam Business Park Rivium.” ATRA,

www.advancedtransit.org/advanced-transit/applications/rivium/

“Advanced Transit - Suncheon Bay Ecotrans PRT.” ATRA,

www.advancedtransit.org/advanced-transit/applications/suncheon/.

“Basics of the SPI Communication Protocol.” Circuit Basics, 23 May 2018,

www.circuitbasics.com/basics-of-the-spi-communication-protocol/.

“Climate Change Indicators: Greenhouse Gases.” EPA, Environmental Protection Agency, 22

Feb. 2017, www.epa.gov/climate-indicators/greenhouse-gases.

Ellis, S., Fabian, L., Furman, B., Muller, P., & Swenson, R. (2014, September). Automated

Transit Networks(ATN): A review of the State of the Industry and Prospects for the

Future [PDF File]. Retrieved December 13, 2018, from

https://www.inist.org/library/2014-09.Furman.Automated%20Transit%20Networks.MTI

%201227.pdf

Fast Facts on Transportation Greenhouse Gas Emissions. (2018, August 27). Retrieved May 14,

2019, from

https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions

“Masdar City Archives.” 2getthere, www.2getthere.eu/tag/masdar-city/.

National Express Transit. (August 17, 2017). 5 Transportation Challenges in Urban Areas.

Retrieved May 14, 2019, from

https://www.nationalexpresstransit.com/blog/5-transportation-challenges-in-urban-areas/

http://www.advancedtransit.org/advanced-transit/applications/rivium/
https://www.inist.org/library/2014-09.Furman.Automated%20Transit%20Networks.MTI%201227.pdf
https://www.inist.org/library/2014-09.Furman.Automated%20Transit%20Networks.MTI%201227.pdf
https://www.nationalexpresstransit.com/blog/5-transportation-challenges-in-urban-areas/

51

“PRT (Personal Rapid Transit) | PRT Facts.” PRT (Personal Rapid Transit) at West Virginia

University, prt.wvu.edu/about-the-prt/prt-facts

Rodrigue, J. (2018, November 08). Urban Transport Challenges. Retrieved May 14, 2019, from

https://transportgeography.org/?page_id=4621

San Francisco Bay Area 5th Worst Traffic Congestion In The World, Study Finds. (2018,

February 06). Retrieved December 13, 2018, from

https://sanfrancisco.cbslocal.com/2018/02/06/san-francisco-5th-worst-traffic-congestion-i

n-the-world-inrix-study/

Sources of Greenhouse Gas Emissions. (2018). Retrieved May 14, 2019, from

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

Transportation Research Board of the National Academies. (2013). Critical Issues in

Transportation [PDF File]. Retrieved December 13, 2018, from

http://onlinepubs.trb.org/onlinepubs/general/criticalissues13.pdf

https://transportgeography.org/?page_id=4621
https://sanfrancisco.cbslocal.com/2018/02/06/san-francisco-5th-worst-traffic-congestion-in-the-world-inrix-study/
https://sanfrancisco.cbslocal.com/2018/02/06/san-francisco-5th-worst-traffic-congestion-in-the-world-inrix-study/
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

52

Appendices

Appendix A - Arduino Code

MCP4725 Test Code:

#include <Wire.h>
#include <Adafruit_MCP4725.h>

Adafruit_MCP4725 dac; // constructor

void setup(void) {

 dac.begin(0x60); // The SPI Address: Run the SPI Scanner if you're not sure

}

void loop(void) {

 uint32_t dac_value;

 // About 1V Out from MC4725
 // About 2V Out from LM358
 dac.setVoltage(819, false);
 delay(3000);

 // About 2V Out from MC4725
 // About 4V Out from LM358
 dac.setVoltage(1638, false);
 delay(3000);

 // About 3V Out from MC4725
 // About 6V Out from LM358
 dac.setVoltage(2457, false);
 delay(3000);

 // About 4V Out from MC4725
 // About 8V Out from LM358

53

 dac.setVoltage(3276, false);
 delay(3000);

 // About 5V Out from MC4725
 // About 10V Out from LM358
 dac.setVoltage(4095, false);
 delay(3000);

}

Main Controller Program:
////////////////////////////////// LIBRARIES //
//Wireless Communication Libraries
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>

//LCD Libraries
#include <LiquidCrystal.h>

////////////////////////////////// DEFINITIONS //
LiquidCrystal lcd(23, 25, 27, 29, 31 , 33); //LCD Screen Definition

//NRF24L01 Wireless Communication Pins
RF24 radio(8, 9); // CE, CSN

// NRF24L01 address through which two modules communicate.
const byte addresses[][6] = {"00001", "00002"};

#define button_pin1 2
#define button_pin2 3
#define button_pin3 4 //Controller button pins, change pins according to PCB

///////////////////////////////// VARIABLES //
int button_pin1_status = 0;
int button_pin2_status = 0;
int button_pin3_status = 0; //Controller button pin status

54

uint32_t dac_value; //dac voltage to be sent to bogie

int pot_pin1 = 0; //Potentiometer 1, change pin according to PCB
int pot_value1 = 0; //Potentiometer 1 Value

int e_brake_pin = 5; //E-brake pin, change pin according to hookup

float volt_count;

// Function Prototype
int buttonread(int, int, int);
int manual_straight();
int auto_straight();

///////////////////////////////// Setup //

void setup()
{
 // put your setup code here, to run once:
 Serial.begin(9600);
 lcd.begin(16,2);
 lcd.print("Motor Voltage: ");

 pinMode(button_pin1, INPUT);
 pinMode(button_pin2, INPUT);
 pinMode(button_pin3, INPUT); //setting controller pins as inputs

 pinMode(e_brake_pin, HIGH);

 radio.begin();
 radio.openWritingPipe(addresses[1]); //00002
 radio.openReadingPipe(1, addresses[0]); //00001
}

///////////////////////////////// Loop //
void loop()

55

{
 pot_value1 = analogRead(pot_pin1);
 // put your main code here, to run repeatedly:
 button_pin1_status = digitalRead(button_pin1);
 button_pin2_status = digitalRead(button_pin2);
 button_pin3_status = digitalRead(button_pin3);
 digitalWrite(e_brake_pin, HIGH); //reset e-brake status
 buttonread(button_pin1_status, button_pin2_status, button_pin3_status);

 dac_value = map(pot_value1, 0, 1023, 0, 4095);
 volt_count = map(dac_value, 0, 4095, 0, 500);
 lcd.setCursor(0,1);
 lcd.print(volt_count/100);
 lcd.setCursor(5,1);
 lcd.print("Volts");

 delay(50);
}

///////////////////////////////// Read Button ///

int buttonread(int button_pin1_status, int button_pin2_status, int button_pin3_status)
{
 if (button_pin1_status == LOW && button_pin2_status == LOW && button_pin3_status ==
HIGH)
 {
 dac_value = 0;
 lcd.setCursor(0,0);
 lcd.print("Manual: Going Straight");
 manual_straight();
 delay(300);
 }

 else if(button_pin1_status == LOW && button_pin2_status == HIGH && button_pin3_status
== LOW)
 {
 dac_value = 0;
 lcd.setCursor(0,0);

56

 lcd.print("Automatic: Going Straight");
 dac_value = auto_straight();
 delay(300);
 }
 else
 {
 lcd.setCursor(0,0);
 lcd.print("Select Mode");
 delay(300);
 }
 return dac_value;
}

///////////////////////////////// Manual Straight //
int manual_straight()
{
 delay(5);
 uint32_t dac_value;
 radio.stopListening();
 pot_value1 = analogRead(pot_pin1);
 button_pin1_status = digitalRead(button_pin1);
 button_pin2_status = digitalRead(button_pin2);
 button_pin3_status = digitalRead(button_pin3);
 if (button_pin1_status == LOW && button_pin2_status == LOW && button_pin3_status ==
LOW)
 {
 dac_value = 0;
 lcd.setCursor(0,0);
 lcd.print("Emergency Brake");
 digitalWrite(e_brake_pin, LOW);
 radio.write(&e_brake_pin, sizeof(e_brake_pin));
 }
 else
 {
 dac_value = map(pot_value1, 0, 1023, 0, 4095); //map pot value to dac output value
 }
 radio.write(&dac_value, sizeof(dac_value));
 delay(5);

57

 int right_hall_counter;
 radio.startListening();
 while(!radio.available());
 radio.read(&right_hall_counter, sizeof(right_hall_counter));
 lcd.setCursor(0,0);
 lcd.print("Bogie passed: ");
 lcd.setCursor(0,14);
 lcd.print(right_hall_counter);
 if (right_hall_counter = 4)
 {
 buttonread(button_pin1_status, button_pin2_status, button_pin3_status);
 }
 return dac_value;
}

///////////////////////////////// Auto Straight //
int auto_straight()
{
 delay(5);
 radio.stopListening();
 if (dac_value < 4095)
 {
 dac_value = dac_value + 819;
 delay(50);
 }
 radio.write(&dac_value, sizeof(dac_value));
 int right_hall_counter = 0;
 delay(5);
 radio.startListening();
 while (!radio.available());
 radio.read(&right_hall_counter, sizeof(right_hall_counter));
 delay(5);
 radio.stopListening();
 if (right_hall_counter = 2)
 {
 dac_value = 0;
 radio.write(&dac_value, sizeof(dac_value));
 delay(100000000);

58

 }
 if (right_hall_counter = 5)
 {
 dac_value = 0;
 radio.write(&dac_value, sizeof(dac_value));
 buttonread(button_pin1_status, button_pin2_status, button_pin3_status);
 }
 return dac_value;
}

Main Bogie Program:
////////////////////////////////// LIBRARIES //
//Wireless Communication Libraries
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>

//DAC
#include <Wire.h>
#include <Adafruit_MCP4725.h>
Adafruit_MCP4725 dac;

////////////////////////////////// DEFINITIONS //
//Hall Effect sensor on both sides of the bogie
#define e_brake_pin 11 //change according to pinout

volatile byte state = LOW;

//NRF24L01 Wireless Communication Pins
RF24 radio(7, 8); // CE, CSN

const byte interruptPin = 9;

///////////////////////////////// VARIABLES //
// NRF24L01 address through which two modules communicate.
const byte addresses[][6] = {"00001", "00002"};

//Position detection varible

59

volatile int right_hall_counter = 0;

uint32_t dac_value;

///////////////////////////////// SETUP //
void setup()
{
 pinMode(e_brake_pin, HIGH);

 pinMode(interruptPin, INPUT_PULLUP); //hall effect

 attachInterrupt(digitalPinToInterrupt(interruptPin), positiondetect_right, FALLING);

 dac.begin (0x60);

 radio.begin();
 radio.openWritingPipe(addresses[1]); //00002
 radio.openReadingPipe(1, addresses[0]); //00001
}
//////////////////////////////////// LOOP ///
void loop() {
 dac_value = 0;

 if(radio.available())
 {
 radio.read(&dac_value, sizeof(dac_value));
 }

 dac.setVoltage(dac_value, false);
}

// INTERRUPTS ///////////////////////////////////
//HALL SENSOR DETECTION//
//RIGHT
void positiondetect_right()
{
 right_hall_counter = right_hall_counter +1;

 radio.stopListening();

60

 radio.write(&right_hall_counter, sizeof(right_hall_counter));
 delay(5);
}

Appendix B - Bill of Materials
(Link to BOM:
https://docs.google.com/spreadsheets/d/1jSPuLsKxgV-ihB-dZJXJIyE0iR47rRj9MzP8CKsaJmw/
edit#gid=0)

https://docs.google.com/spreadsheets/d/1jSPuLsKxgV-ihB-dZJXJIyE0iR47rRj9MzP8CKsaJmw/edit#gid=0
https://docs.google.com/spreadsheets/d/1jSPuLsKxgV-ihB-dZJXJIyE0iR47rRj9MzP8CKsaJmw/edit#gid=0

61

62

Appendix C - Data Sheets for Components and Libraries

MCP4725 Datasheet:

63

LCD Screen Datasheet:

64

NRF24LO1+ Datasheet:

65

Motor Controller Datasheet:

66

Motor Controller Pin Outs DataSheet:

67

Motor Controller Error Codes Datasheet:

68

Component Libraries:

Adafruit MCP4725 library: https://github.com/adafruit/Adafruit_MCP4725
Arduino LCD library: https://github.com/arduino-libraries/LiquidCrystal

https://github.com/adafruit/Adafruit_MCP4725
https://github.com/arduino-libraries/LiquidCrystal

