

A Solar Powered Automated Public Transportation System

San Jose State University

College of Engineering

May 23rd, 2014

1st Edition, Vol. 2

Table of Contents
Spring 2014 Goals & Accomplishments .. 1

Team Roster .. 2

Club Officers .. 3

Sponsorships / Acknowledgments .. 4

Guideway Team .. 5

Theoretical System Model .. 5

Maker Faire Model .. 8

Next Steps ... 17

Bogie Team ... 19

Requirements and Specifications.. 19

Design Challenges ... 20

Theoretical System Model .. 21

Maker Faire Model .. 30

Next Steps ... 40

Cabin Team ... 43

Theoretical System Model .. 44

Maker Faire Model .. 53

Next Steps ... 58

Solar Team .. 59

Maker Faire Model .. 59

Theoretical System Model .. 69

Next Steps ... 77

Controls Team ... 78

Theoretical System Model .. 78

Maker Faire Model .. 89

Next Steps ... 122

References .. 125

Appendix A: Eccentric Loading Calculations ... 127

Appendix B: Bending Stress Calculations .. 129

Appendix B: Bending Stress Calculations .. 130

Appendix D: Center of Mass and Moment of Tipping Calculations .. 131

Appendix E: System Integrity Calculations.. 133

Appendix F: Guideway SolidWorks Analysis ... 134

Appendix G: Guideway Part Drawings .. 144

Appendix H: Guideway Assembly Drawings ... 151

Appendix I: Bogie Design Requirements ... 159

Appendix J: Bogie Design Specifications ... 161

Appendix K: Bogie Static Analysis ... 164

Appendix L: Engineering Drawings ... 175

Appendix M: Bogie Assembly Drawings .. 180

Appendix N: Bogie Bill of Materials .. 188

Appendix O: Cabin Bill of Materials .. 189

Appendix P: Cabin Drawings .. 190

Appendix Q: MATLAB Code for Speed Control PID Tuning ... 194

Appendix R: Arduino PID Speed Control Source Code .. 195

Appendix S: Arduino Maker Faire Sketch ... 197

Appendix T: Arduino Pod class ... 206

Appendix U: Arduino SPI Sketch ... 215

Appendix V: 1/12-Scale Part Drawings ... 217

Appendix W: Bill of Materials ... 236

Appendix X: SunPower Data Sheet ... 238

Appendix Y: Enphase M250 Microinverter Data Sheet .. 240

Appendix Z: Aluminum 6063-T5 Data Sheet ... 242

Appendix AA: Solar – Cold Rolled Steel Column Mount ... 243

Appendix AB: Solar – Guideway Mount .. 244

Appendix AC: Solar Frame Assembly Drawing .. 245

Appendix AD: Solar Team Bill of Materials ... 246

Table of Figures
Figure 1. Previous guideway design .. 5

Figure 2. Beamways Superways Guideway profile ... 6

Figure 3. Guideway straight section ... 8

Figure 4: The results for the deflection analysis performed using FEA. The distance, D, was the

horizontal deflection due to applied loads. It was found to have a deflection of 0.368 inches from the

vertical. ... 9

Figure 5: The bottom of the support structures. The base pieces were made from 8-inch wide ¼-inch

thick flat stock. The angled braces were made from 3-inch wide 5/16 inch thick flat stock. The main

support column was made from 4-inch square ¼-inch thick tube. All welds were solid seam welds 12

Figure 6: The support assembly. The support arms and backplate were made from 8-inch wide, ¼-inch

thick flat stock. A specific hole pattern was drilled in the backplate for mounting the support to the

guideway ... 13

Figure 7: The main guideway body. It was constructed by sandwiching “J” shaped ribs between plywood

sheets. The ribs were strengthened by attaching L-brackets to the joints. .. 14

Figure 8: The rail mounted on the main guideway section. The rail is capped with a 0.120 inch thick

custom C-channel and attached to the guideway with galvanized steel bolts... 15

Figure 9: The assembled guideway system, set up for display at the Maker Faire in May 2014. 17

Figure 10. Interior dimensions of cabin .. 43

Figure 11. Original frame modeled with Solidworks .. 44

Figure 12. Modified main-frame section of cabin .. 45

Figure 13. Creo Parametric 2.0 FEA results for von Mises (left) and displacement (right) 45

Figure 14. Drag coefficents ... 47

Figure 15. Side cross sectional view of sub-frame dimensions .. 47

Figure 16. Front cross sectional view of sub-frame dimensions... 48

Figure 17. Exterior of the cabin ... 49

Figure 18. CitiSeat by Freedman Seating .. 50

Figure 19. Distance between seats for bikes and other personal belongings .. 51

Figure 20. Side view of interior ... 52

Figure 21. The 2 seater bench ... 52

Figure 22. Section view showing the door mat and hand rails ... 53

Figure 23. Original condition of donated snow coach .. 54

Figure 24. Finished cabin connected to the bogie by the H-bar at the warehouse.................................... 54

Figure 25. Completely assembled system at the 2014 Bay Area Maker Faire ... 55

Figure 26. The Maker Faire Model with attachment modeled in Solidworks .. 55

Figure 27. H-bar attachement ... 56

Figure 28. Supportive cabin flat bar .. 56

Figure 29. FEA of displacement of the screw with applied load using Solidworks 57

Figure 30. FEA of stress on the screw with applied load using Solidworks .. 57

Figure 31: SunPower X21-345 ... 60

Figure 32: Enphase M250 Microinverter .. 61

Figure 33: Power Distribution Diagram .. 61

Figure 34. Simple H-bar design of the solar panel frame with aluminum as the material of choice. 62

file:///C:/Users/cor/Desktop/REPORT/FINAL/ENGR195D_2013-2014_FINAL.docx%23_Toc389162339
file:///C:/Users/cor/Desktop/REPORT/FINAL/ENGR195D_2013-2014_FINAL.docx%23_Toc389162340

Figure 35. SJSU Civil Engineering Technician, Pat Joice doing the welding of the individual pieces of the

solar panel frame. ... 63

Figure 36. Final outcome of the aluminum solar panel frame with the thin film solar panels that would

be later on mounted onto the frame itself. .. 63

Figure 37. Wind Load Simulation – Static Test ... 64

Figure 38. Von Mises Stress Plot .. 64

Figure 39. Displacement Plot ... 64

Figure 40. Frame Mount – Static Analysis Setup ... 65

Figure 41. Frame Mount - Von Mises Stress Plot ... 66

Figure 42. Frame Mount – Displacement Plot ... 66

Figure 43. Guideway Mount – Static Analysis Setup ... 67

Figure 44. Guideway Mount - Von Mises Stress Plot ... 67

Figure 45. Guideway Mount – Displacement Plot ... 68

Figure 46. Solar Panel Frame – Maker Faire Final Design .. 68

Figure 47. Guideway with Solar Panels – Maker Faire Final Design .. 69

Figure 48. Static Mount Concept ... 71

Figure 49. Single Axis Tracking on a Horizontal Axis. ... 72

Figure 50. Single Axis Tracking System on a Vertical Axis .. 72

Figure 51. Single Axis Tracking System on a Tilted Axis ... 72

Figure 52. 3D cad design of initial brainstorm session designs. .. 74

Figure 53. 3D cad design cut out of single axis system from brainstorm sessions. 74

Figure 54. 3D cad design of single axis tracker concept derived from brainstorm sessions. 75

Figure 55. 3D cad design of horizontal single axis tracker derived from brainstorm session. 76

Figure 56. 3D cad design of tilted tracker derived from brainstorm session. ... 76

Figure 57. SPI System Network. The master and slave devices share three common pins, and each slave

has its own selection pin on the master device. ... 80

Figure 58. SJOne Microcontroller. The SJOne microcontroller has wireless capability and runs a real-time

operating system. ... 80

Figure 59. Block Diagram of Speed Control System ... 81

Figure 60. Uncompensated Step Response of DC Motor .. 82

Figure 61. Compensate Step Response of DC Motor ... 83

Figure 62. Root Locus of Closed-loop System .. 84

Figure 63. Bode Plots of Close-loop System... 84

Figure 64. Navigation Subsystem. The 1/12-sclae model uses reflective object sensors and a solenoid to

navigate the track network. .. 88

Figure 65. Object Detection Subsystem. The ultrasonic sensor is used detect whether or not there is a

path obstruction and the distance to any path obstructions. .. 89

Figure 66. Circuit Diagram for L4940V5 Voltage Regulator (Source: STMircoelectronics) 90

Figure 67. Circuit of Voltage Regulator on Arduino Proto Shield Converting 6V from 4-AA Batteries to 5V

 .. 91

Figure 68. Circuit of Voltage Regulator and Sensors on Arduino Proto Shield ... 92

Figure 69. Circuit of Voltage Regulator with Sensors and Switching Solenoids with Separate 4-AA Battery

Packs ... 93

Figure 70. Circuit of Complete Pod Electronics Connected to Arduino Proto Shield 94

file:///C:/Users/cor/Desktop/REPORT/FINAL/ENGR195D_2013-2014_FINAL.docx%23_Toc389162361

Figure 71. Interlocking T-bolt Construction. Using this technique on acrylic pieces allows temporary

assembly and simple disassembly. (Oomlout, 2014) ... 95

Figure 72. Joined Acrylic Components. Interlocking T-bolt construction provides a tight fight and

prevents the nut from freely spinning (Oomlout, 2014). ... 95

Figure 73. 1/12-scale CAD Assembly. The chassis is constructed from approximately 15 unique parts. . 98

Figure 74. 1/12-scale Chassis. Off-the-shelf components were used whenever possible........................ 98

Figure 75. Pixy CMUcam5. Pixy is an Arduino-compatible image recognition system that integrates an

automotive industry-level camera. ... 123

Table of Tables
Table 1: The results of multiple engineering analyses on the support structure. The weakest point for

the support structure was the long angled braces that had a buckling safety factor of 2.9. 9

Table 2: The bill of materials for the manufacturing of the support structure. See Appendix G for details.

 .. 12

Table 3: The bill of materials for the guideway. See Appendix G: Guideway Part Drawings for details. .. 15

Table 4 - Frame Properties .. 46

Table 5 - FEA results .. 46

Table 6 - Unit conversions ... 48

Table 7 - Equation symbols and values ... 48

Table 8. Alternative Concepts for Design Consideration. .. 71

Table 9. Criteria for Basic Decision Matrix ... 73

Table 10. Basic Decision Matrix ... 73

1

Spring 2014 Goals & Accomplishments
Once the Spartan Superway Team received confirmation that they would present their work at Bay Area

Maker Faire 2014, each team needed to reassess their semester goals in order achieve a physical

deliverable that could be transported to San Mateo for the event. For all of the teams, this meant scaling

down the theoretical designs in some fashion.

The Bogie Team was able to complete a full-scale bogie chassis that is the most representative of the

theoretical design in relation to the other teams. The bogie uses the actual wheels incorporated in the

theoretical model and was fabricated from laser-cut steel plate, as well as tube steel. The bogie only

lacks a fully functional steering mechanism, motor assembly, and the point at which it attaches to the

cabin was scaled down due to the smaller mock cabin incorporated for the Maker Faire display.

Although the Guideway that the bogie rides along is also full-scale, it does not sit at the full-scale height,

nor do the supports represent the full-scale model as. The Guideway Team’s Maker Faire model

required the most significant changes in regards to theoretical design due to safety and transportation

logistics. Instead of fabricating the guideway from steel, the team opted to use wood instead. Not only

did this choice make transporting the guideway significantly easier, it also provided a safer exhibit be

dramatically reducing the likelihood that the guideway might tip. Redesigning new supports for the

guideway also diverted the team’s development of the theoretical model. Instead of performing

structural analysis of the theoretical model, the team had to focus on the shorter steel supports for the

wooden guideway to ensure it would not tip, even when fully loaded and experiencing 27 mph winds.

Instead of fabricating a full-scale cabin, complete with a steel frame, the Cabin Team had to redirect its

efforts into producing a cabin that could easily attach to the bogie, without subjugating the guideway to

too great of an additional load. By retrofitting a towable wagon designed for snowmobiles, the Cabin

Team was able to present a streamlined cabin that was representative of the ATN concept to Maker

Faire spectators.

Similarly, the Solar Team had to modify their theoretical solar panel mount to fit the new guideway

supports, and also to accommodate solar panels that were donated by a sponsor, rather than

implement the solar panels specifically chosen for the theoretical model. Additionally, they opted to

fabricate a static solar panel mount due to the fact that developing a new solar tracking system for a one

weekend event was both time and cost-prohibitive.

The Controls Team did not need to scale down their design to the same extent as the other teams,

primarily due to the fact that safety and transportation were less an issue. The only transportation

problem arose from the limited setup time prior to the event. With only a two day window to setup, the

Controls Team chose to operate the pods on batteries rather than rely on the 1/12-scale solar power

transmission system. The only other significant modification was to use fewer microcontrollers on each

pod for better reliability in operation and communication.

2

Team Roster
Project Advisor: Dr. Burford Furman

Mentors: Maria Blum-Sullivan, Bryan Burlingame, Sam Ellis, Lizie Michel, and Ron Swenson

Program Managers: Alex Cowley and Jaston Rivera

Bogie Team: Max Goldberg (Lead), David Lhotak, and Paolo Mercado

Brochures: Eugenia Tai –Civil Engineer, Lead Creative Designer, Graphic Design Specialist

Business Team: Laisz Lam

Cabin Team: Alex Cowley (Lead), and Ken Ho

Controls Team: Cory Ostermann (ME Lead), Eriberto Velazquez (CMPE Lead), Man Ho, Marjo Mallari,

Randall Morioka, Elizabeth Poche, Trent Smith, and Anthony Vo (Spartan Superway Club member)

Human-Centered Design Team: Maria Blum-Sullivan (Lead), Alex Cowley, and Ken Ho

Report Review Team: Alex Cowley, Cory Ostermann, Jaston Rivera

Solar Team: Francisco Martinez (Lead), Jaston Rivera, Tim Santiago, and Henry Tran

Special Projects Lead: Keith McKenna – Civil Engineer Graduate Student

Station/Guideway Team: Cormac Wicklow (Lead), Daniel Conroy, and Carlos Guerrero

Pod and Station Industrial Design Team: the students of DSID 125: Advanced Industrial Design, led by

Jim Shook.

User-Interface/User-Interaction Design Team: the students of DSID 131: Interactive and Interface

Design, led by Tingbin Tang.

Website Design Lead: Francisco Martin

3

Club Officers
President: Cory Ostermann

Vice President: Tim Santiago

Treasurer: Jaston Rivera

Secretary: Henry Tran

4

Sponsorships / Acknowledgments

Guideway Team

Theoretical System Model

At the beginning of the semester, the working design was very similar to the design from the fall 2013

semester. That design is based on an I-beam, as shown in Figure 1. In the process of analyzing this

design, the guideway team discovered a number of flaws with this design. The main shortcoming

involved the switching mechanism, as mentioned in the previous section.

Figure 1. Previous guideway design

At this point, a radical redesign is required. The guideway team was fortunate enough to connect with

Bengt Gustafsson of Beamways AB. This is a Swedish company with a number of years invested in

creating a personal rapid transit system (PRT) for use in Sweden. Due to the influence of the advisors

and professors in the SMSSV team, Mr. Gustafsson flew out to meet with the team for a few days in

early February. It was during this time that the guideway team discussed a number of possible options

for the guideway. Due to his experience in the field and shear breadth of design work already

completed, the team decided to emulate his design, henceforth known as the Beamways Superways

Guideway. There are a number of advantages for this design, which is a single rail design with traverse

supporting rails, the profile of which is shown in Figure 2. Also shown is an optional covering, which is to

be discussed later.

6

Figure 2. Beamways Superways Guideway profile

The first major advantage of this design is the shear simplicity of it. The entire profile can be made of

20mm steel, without heavily or costly I-beams. The weight of the design is much lower than the previous

semester’s model, which is shown in Figure 1. To effectively create a guideway, more than just straight

sections are required. Nearly every rail system requires curves, which are difficult to create with I-

beams. This model uses thin steel, which is easy to bend and form as desired. A major disadvantage of

the previous model involved the cantilever sections as mentioned in a previous section of this report.

The Beamways Superways Guideway profile eliminates the need for a cantilever overhang during

switches, which will be discussed further through greater examination of this design. Due to a number of

time constraints, this guideway design has not been fully completed. As mentioned in the introduction,

there are a number of sacrifices which were made during the semester. By the time the current

cross-section was decided on with Mr. Gustafsson, only two months were left until the end of the

semester. The focus was split between designing this theoretical model, and building the wooden model

for display at Maker’s Faire. After discussion and weighing the benefits of both courses of action, it was

decided that the focus should be on creating a full-scale model for display. This would provide a tangible

object to educate the public on the idea of PRTs as a whole, and would benefit the cause more than a

fully fleshed out theoretical design. Because of this, the guideway team spent a majority of its resources

and time analyzing and building the wooden model which is detailed in the next section of this report. A

working computer model of the theoretical design is completed, but full analyses were not performed

on this design due to the above mentioned time constraints. The bogie team, working concurrently with

the guideway team, created a working design for the switching section, which is a simplified design of

Bengt Gustafsson’s Beamways system. Because of this, the switching mechanism is not defined by the

guideway team, and should be completed by future teams working on this project. The completed

7

theoretical design contains a computer model of the proposed design for a straight section of track,

along with the support structures.

As mentioned earlier, the design is utilizes a single rail with traverse supporting walls located above. As

shown with the current bogie design, the main load is focused on the single rail. It is made of 20mm

thick steel, which is 180mm tall. For each section of the bogie, this piece must support the main drive

wheel, which rides above rail, as well as a switching wheel located on either side of the lower portion.

The highest lateral stresses on this rail will occur during switching sections, when the two lower wheels

are used to change the course of the bogie. During straight and curved sections, the main lateral load is

supported by the traverse walls near the top of the track. The weight which must be supported is

approximately 300 pounds for each section of the bogie, plus the amount of weight of the cabin and

passengers. Due to the nature of the priorities during this semester, a definite amount of weight to be

supported is not known. Because of this, as well as other issues, the guideway team is not able to

provide analysis for the loads supported by this guideway model.

The upper and lower rails are attached by a series of steel ribs, which are mounted along the guideway

every 200mm. These provide lateral and torsional stability to keep the rails inline. The full design of this

Beamways Superways Guideway is shown below in Figure 3, which contains the rails, ribs, covers, and

supports. All of the steel pieces are created with the same 20mm steel plates, which can be fabricated

using laser cutting to provide relatively cheap and quick parts. For the main sections, there are no

components which require special machining or processing. The rails are connected to the ribs with a

series of welds, which provide the highest possible strength, at the cost of reparability. As mentioned in

the previous section regarding design requirements, the guideway is designed to last for 20 years

without replacement, and only preventative maintenance. However, the PRT systems will be useful long

after this amount of time has elapsed, so further solutions will need to be developed in the future.

As shown in Figure 3, there are two sets of rails operating from the same set of supports. In practice, this

would allow pods to travel in opposite directions without needing to create excess infrastructure. The

two rails are attached with a steel tube, and welded into place. The steel cross beam is placed into a

notch in the support and bolted into place. This is so that the supports can be erected while the rails are

assembled on the ground or offsite. This allows the rails to be hoisted into place, and attached into

place.

8

Figure 3. Guideway straight section

The supports themselves are made with thick steel tubing, which is sunk into the ground to provide

maximum stability. To create each support, a 20” hole is dug into the ground, and concrete is poured in,

with a cavity to place the steel vertical tube. At this point, the exact dimensions of the steel tube are

unknown, and will require further discussion and calculations. To provide a safe and effective design for

the supports, a civil engineer should be consulted. This is because the design involves a large amount of

concrete and interface with the ground, which is better suited for other disciplines. The current

guideway team is composed of mechanical engineers, which do not have sufficient experience with

these types of projects.

As shown in Figure 3, there is an optional cover place on the rightmost rail. This is created to provide

relief from environmental effects. Steel will exhibit some amount of rust when exposed to the elements,

and does look attractive at this point. To provide a beautiful skyline, the metal can be covered with a

painted façade which can be refurbished at regular intervals. This also keeps small animals and birds

from entering the track as easily. In the same vein, the ribs do not provide a sufficient surface area for

birds and small animals to nest on the track.

Maker Faire Model

Engineering of Support Structure

The Guideway was purposely overbuilt due to the complex nature of wood as a material. Additionally

the complex internal structure of the guideway made mathematical and computer analysis beyond what

was capable. A broad isotropic analysis was completed in Solidworks and the results indicated that with

9

the additional material and fasteners used the guideway would be capable of supporting the loads

without failure. The verification of these assumptions were done during the assembly of the system,

which is discussed in a subsequent section.

It was determined that the Support Structure would be the focus of the Engineering for the system.

There were several concerns for failure of these supports and it was necessary to account for aspects to

insure the safety of the public and the team. The scope of the engineering analysis for this structure

was buckling, bending, and deflection.

Finite Element Analysis (FEA) was done for the deflection of the support structure under the applied

loads. See Appendix F for the software generated report. Figure 4 shows the result for the FEA. The

areas in red indicate the higher levels of deflection and the blue areas indicate areas of low deflection.

As seen on Table 1, the horizontal deflection of the top of the support was determined to be 0.368

inches. This value was used to calculate the vertical deflection of the top, outer edge of the guideway.

That deflection was determined to be 0.167 inches. The displacement was measured when the system

was fully assembled and found a difference from ten feet (the designed height) to be 0.25 inches. The

displacement fell within an acceptable range and the deviation from the theoretical was attributed to

the support and guideway not being square.

Figure 4: The results for the deflection analysis performed using FEA. The distance, D, was the

horizontal deflection due to applied loads. It was found to have a deflection of 0.368 inches

from the vertical.

Table 1: The results of multiple engineering analyses on the support structure. The weakest point for
the support structure was the long angled braces that had a buckling safety factor of 2.9.

Cartesian Origin

for Tipping

Calculations

10

Column Buckling Safety Factor = 6.1

Brace Buckling Safety Factor = 2.9

Column Bending Safety Factor = 7.1

Horizontal Deflection

[D]

0.368 in

Vertical Deflection 0.166 in

Wind Speed to Tip 22.5 mph

Several analyses were completed without the use of a computer. The first analysis (Appendix A) was for

the buckling of the main support column. The column was a 10 foot long, 4 inch square, ¼ inch thick

tube. The slenderness and tensile yield strength of the steel indicated that the secant column formula

(Appendix A) was to be used to calculate the critical buckling load. It was determined that the safety

factor for buckling of the main support column was 6.1. This showed that the main support column was

much stronger than necessary to resist loading on the member.

Following the buckling analysis for the main support column, an analysis was done for the bending of

the support under the applied loads (Appendix B). The bending moment stress equation was used to

determine the maximum moment that could be applied the column before yielding would occur. This

value was compared to the moment that was applied from loading the structure and it was determined

that the safety factor for bending of the main support column was 7.1.

The large, angled, support braces at the base of the support were determined to be the members in

which failure would occur first, if failure were to occur. This was determined based on the location of

the center of mass for the system and the length of the members. The secant column formula was used

to determine the critical buckling load of the member. The analysis (Error! Reference source not

ound.) was completed assuming fixed-fixed ends and an AISC recommend length of 65% of the actual

length. The critical buckling load was compared to the load applied, and it was determined that the

members had a safety factor of 2.9.

Another concern for the system was tipping due to wind load. The system was to be presented at an

outdoor exhibit and the safety of the public was a primary concern. An analysis (Appendix D) was

completed to determine the maximum wind speed that the support structure could withstand before

tipping occurred. The critical wind speed for tipping was found to be 22.5 mph. This speed is greater

than the average wind speed for the location that the system was to be presented in and was

determined to be a safe design. An additional contingency plan was put into place which would allow

the solar panels mounted on the top of the system to tilt and reduce the cross sectional area in the

event that higher wind speeds were encountered.

11

In addition to determining the critical wind speed for tipping, the force required to tip the system was

determined (Appendix D) and it was found that the wind force for tipping was less than the force

required to buckle the brace members. Another concern was for the buckling of the braces after tipping

commenced. An analysis was done that evaluated the system while tipped (Appendix E). As the system

tipped, the center of mass would create a greater moment on the supports and could cause buckling.

The point at which this moment would be greatest was after the system tipped 22°, which was when the

center of mass was directly above the axis of rotation. After this point, gravity would pull the support

the rest of the way to the ground. The force that the members experienced under the loading produced

by the 22° tipping angle was found to be greater than the critical buckling load as determined

previously, however other considerations led to the conclusion that the supports were acceptable.

The safety factor was 0.86, which was less than 1.0. The safety factor indicated a potential for material

deformation. However, the critical buckling load was determined with the AISC recommended effective

length, which is more conservative than the theoretical prediction. The theoretical prediction was a

critical buckling load of 2300 lb., which resulted in a safety factor of 1.4. Additionally there were other

factors contributing to the strength of the joint that were not taken into consideration with these

calculations. The two major contributors not accounted for were the resistive force provided by the

welds between the main support column and the baseplate, and the baseplate resistive force both in

tension and bending. If those were calculated it was determined that the maximum force on each

member would be less. Coupled with the use of the AISC recommended length, it was determined that

the angled brace members were acceptable to use in the design.

It was then determined that under all wind load conditions that the system would always tip and the

support members would not buckle from wind loads or wind tipping situations. It was noted that the

steel support braces slid easily on the surfaces that they were located. Provided the base did not

encounter an obstruction it was determined that the system would likely slide rather than tip.

Manufacturing of Support Structure

The support structures were constructed entirely of steel. The steel was provided at a reduced cost

from PDM steel, one of SMSSV’s sponsors. The San Jose State University Civil Engineering Technician,

Patrick Joice, welded the parts of the support structure together. The parts of the support were

fabricated from different stock pieces of steel. The angled brace members were cut from 3-inch wide

5/16-inch thick flat stock. There were four short braces and two long braces for each support, as shown

in Figure 5. The base was made from 8-inch wide ¼-inch thick flat stock. The base was a “T” shape,

which was fabricated by welding two short sections of flat stock to either side of the end of a long

section of flat stock. The main support column was a 10-foot long, 4-inch square, ¼-inch thick tube. The

tube was welded to the base, and the angled braces were then welded to the tub and to the base, to

insure that the tube was square with the base. The guideway support arms and backplate where

fabricated from 8 inch wide, ¼ inch thick flat stock. The backplate had 9/16-inch diameter holes drilled

through it at a specific pattern for mounting the guideway with bolts. The backplate was welded to the

support arms, and then the support assembly, shown in Figure 6, was welded to the main support

column. The support assembly was positioned down the tube so the top of the tube would be level with

12

the top of the guideway. All welds that were done were solid seam welds to insure exceptional strength

under loading.

Table 2: The bill of materials for the manufacturing of the support structure. See Appendix G for details.

Bill of Materials for Support Structures

Component Quantity Dimensions [in]

Main Support Column 2 4 x 4 x ¼ thick tube, 120 long

Small Brace Member 8 3 x 5/16 thick flat stock, 25 long

Large Brace Member 4 3 x 5/16 thick flat stock, 62 long

Long Base Section 2 8 x ¼ thick flat stock, 60 long

Short Base Section 4 8 x ¼ thick flat stock, 16 long

Support Arm 4 8 x ¼ thick flat stock, 32 long

Back Plate 2 8 x ¼ thick flat stock, 20 long

Figure 5: The bottom of the support structures. The base pieces were made from 8-inch wide ¼-inch

thick flat stock. The angled braces were made from 3-inch wide 5/16 inch thick flat stock. The

main support column was made from 4-inch square ¼-inch thick tube. All welds were solid

seam welds

13

Figure 6: The support assembly. The support arms and backplate were made from 8-inch wide, ¼-inch

thick flat stock. A specific hole pattern was drilled in the backplate for mounting the support to

the guideway

Manufacturing of Guideway Section

The guideway was constructed with the assistance of Keith McKenna, a Civil Engineering Graduate

Studies Student. The materials that the guideway was constructed from was 2x4 planks, ¾ inch thick

plywood, nails, construction adhesive, L-brackets, wood screws, bolts, a C-channel rail, and a 2x8 plank.

The body of the guideway was constructed by fabricating 14 “J” shaped rib from 2x4 planks, as shown in

Figure 7. The parts of the ribs were held together with nails, and then L-brackets were screwed to the

joints to provide additional strength and deflection resistance. The Ribs were positioned ever 16 inches

on center down the length of the guideway with an additional rib at each end, and an additional rib at

each point of connection to the support structure. The ribs were attached to plywood sheets on all

faces with construction adhesive and nails. This produced a “sandwich” of 2x4 ribs between two

plywood sheets. Additional braces between each rib were added at the top portion of the guideway for

increased torsional rigidity.

The 2x8 plank was machined by Amberwood, a SMSSV sponsor. The final dimensions were a 1x7 plank,

16 feet long with a 1/8 inch cap section machined out along the length of the top portion of the plank.

The additional, machined portion was to allow the C-channel cap to sit on the rail and be flush with the

14

wooden portion. The steel rail was necessary for the bogie to ride on. If the rail was not in place there

was a concern about deformation of the wood that could cause failure in operation.

Figure 7: The main guideway body. It was constructed by sandwiching “J” shaped ribs between plywood

sheets. The ribs were strengthened by attaching L-brackets to the joints.

15

Figure 8: The rail mounted on the main guideway section. The rail is capped with a 0.120 inch thick

custom C-channel and attached to the guideway with galvanized steel bolts

The rail, shown in Figure 8, was custom fabricated. A standard C-channel could not be used because the

interior surface of C-channel has tapered sides. The tapered sides would require the plank to be

machined down farther, which would result in a lack of material needed for support. Therefore, the

solution was to purchase a 1x2 inch 0.120 inch thick ornamental steel tube, 8 feet long. The tube was

ripped down the length to produce two 8 foot, 1x1 inch by 0.120 inch thick “C-channel pieces. The

custom C-channels were glued and fastened to the 1x7 wooden rail with construction adhesive and #8

machine bolts. The rail was then attached to the main guideway body with ¼ inch diameter galvanized

steel bolts. At the locations of the support structure connections ½ inch diameter bolts were used, and

the bolts extended completely through the rail, guideway, and support structure backplate. This was

done to provide additional strength to the rail, as it was the part of the guideway that supported the

load form the bogie and the cabin.

Table 3: The bill of materials for the guideway. See Appendix G: Guideway Part Drawings for details.

Bill of Materials for the Guideway

Components Quantity Dimension [in]

Rib Pieces 14 2 x 4 planks

Face Pieces N/A ¾ plywood

Guiderail 1 1 x 7 plank

Rail Cap 1 1 x 1 x 0.12 thick steel C-channel

Bolt 16 ½ diameter 6 long

Bolt 4 ½ diameter 8 long

Bolt 10 ¼ diameter 8 long

Nut 20 ½ diameter

Nut 10 ¼ diameter

16

Washer 40 ½ diameter

Washer 20 ¼ diameter

Nails N/A varied

Construction Adhesive 8 tubes N/A

L-Bracket 56 1/8 thick 4 inch sides

Assembly of Guideway/Support System

The guideway system was assembled by first wrapping the main guideway body in hoisting straps. A

chain was wrapped between the two straps, and then a forklift lifted the guideway from the chains. The

Guideway was positioned against the support structure. Holes were drilled through the guideway using

the hole pattern on the backplate as a pattern. Bolts were then plunged through the holes, and

secured. Once all bolts were connecting the guideway and support structure together the forklift

released the guideway and the supports solely held the guideway. The chain and hoisting strap was

removed. A hole was drilled on the top of the guideway and an eye-bolt was fastened at the center of

mass, that would allow for future relocation and assembly by attaching a chain to the eye-bolt and

wrapping it around a forklift. Plywood caps were constructed and screwed to the ends of the guideway.

The caps prevented the bogies from rolling out of the guideway and onto the ground. The caps were

only screwed on to allow for easy removal. Easy removal was necessary so the bogies could be slid out

of the guideway when relocation was desired. The guideway was painted with flat white exterior paint,

and the back of the guideway received a Spartan Superway logo stencil. The bogie were slide into the

guideway and the cabin was fastened to the bogies. The solar panels were mounted on the top of the

support structures.

17

Figure 9: The assembled guideway system, set up for display at the Maker Faire in May 2014.

Next Steps

Theoretical Model
As mentioned in the system model section, there are a number of areas which require further work. The

guideway team was unable to provide a number of calculations due to insufficient data from other

teams, as well as time constraints. A major objective which must be completed before work can

progress is the analysis of stresses on the rail. Once the combined weight of the bogies, cabin, and

passengers is known, FEA analysis of the design can proceed. There are a number of parameters which

can be optimized. The design of the ribs can be changed to provide effective support against torsion and

bending. At this point, it is unknown which of these is a larger problem. The height of the rail may be

adjusted to ensure that it does not bend under the combined load.

The switching section is integrated heavily with the bogie team. At this point in time, the bogie team has

created a rough design which interfaces with their wheel setup. To create a working design,

collaboration with their team is required. This is to ensure that a number of parameters, including wheel

height and position during switching, are taken into account.

To create a safe and effective design for the support system, collaboration with civil engineers is

required. There are too many unknown variables which come into play when working with concrete and

ground soil. The basic design is provided, but it is assumed at this point that a number of changes will

need to be made. Also, the visual impact of these supports must be taken into account because they will

be placed frequently in urban centers.

18

Maker Faire Model
The guideway was constructed while considering additional iterations, or additions to the system. What

was determined to be a significant improvement to the system would be an addition of a switching

section of track. The switching section of track can be built with the same dimensions and height as the

straight section. Similar supports could be constructed, although some engineering would need to be

completed in order to insure that the angled braces could support any changes in loading. The switching

section could be attached to the straight section in a similar fashion as the support structure is attached

to the straight section. The ribs at the ends of each section, could be butted against one another and

the support could be positioned at the joint. An additional steel plate can be added to the opposite side

of the backplate and it would act as a multiple bolt washer for the guideway. The switching junction is a

vital part, and arguably to most important part of the guideway. It is important to showcase the

functionality of this part, so the concept can be “sold” to municipalities and politicians, who will be

fundamental in implementing the ATN in their cityscapes.

19

Bogie Team
On the Superway PRT vehicle, the bogie is the component which navigates the guideway and supports

the cabin and its passengers. It is responsible for propulsion, braking, structural support, sway control,

track switching, and interfacing with the power conduits located on the track. The bogie is located above

the cabin.

Figure 1: Superway Bogie Prototype V1.0 in Guideway at Maker Faire (Photo Credit: Dr. Buff Furman)

The bogie team is responsible for all structure and components between the guideway and the roof of

the cabin. The following interfaces exist between the bogie subsystems and the other components of

the Superway design:

 Wheels/rollers in contact with the guideway

 Mounting points on the roof of the cabin

 Contact points to transmit power to the bogie from the 3rd rail

 Communication between control system and bogie controller (method TBD)

Requirements and Specifications
The guidelines, criteria, and constraints of the Superway Bogie were defined during the fall 2013

semester. All system model components have been or will need to be selected and designed to meet

20

them. For a full breakdown of the Design Requirements and Specifications, see appendices Appendix I:

Bogie Design Requirements and Appendix J: Bogie Design Specifications.

Design Challenges
There are a number of design challenges with regards to the Spartan Superway Bogie. The critical design

challenge which was resolved this semester was defining wheel placement to enable bogie-selected

guideway switching for a suspended podcar design.

 Figure 2a: Train Switch Figure 2b: ATN Switch

In a conventional train or light rail, it is acceptable to have moving parts in the track in order to direct

trains in one direction or another. This is because each car in the train is heading in the same direction

as the one in front of it, as illustrated in Figure 2a. Additionally, the lead time between each train is

typically large. In the event of a switch malfunction, the train is nowhere near the switch, and can be

safely stopped before it reaches the switch, avoiding a derailment.

By contrast, an ATN guideway must be completely static at the guideway switch. Hypothetically, each

car in an ATN may wish to travel the opposite direction of the car in front of it, as illustrated in Figure 2b.

In order to achieve this with moving parts in the guideway, the parts must be able to move very rapidly,

as the lead time between cars will be very small. Additionally, the cars will not be able to stop before

entering the switch if there is a malfunction. In the case of a suspended vehicle, the subsequent

derailment could equate to the car falling off the guideway, causing injury, death, and property damage

for the occupants and everyone in their path.

21

It is possible to increase the gap between cars, thereby increasing lead time and allowing cars to be

beyond a safe braking distance of the switch, which could signal a malfunction. Doing so, however,

would enlarge the space between cars significantly, resulting in inefficient use of guideway space. Since

infrastructure efficiency is the hallmark of the ATN, this approach is undesirable. It is a commonly

accepted requirement of an ATN that switching must be handled by the vehicle, not the guideway.

Figure 3: Guideway Groove Problem

Designing for the static-guideway condition with a suspended cabin is a unique challenge. The guideway

itself is a barrier between the bogie and the cabin, so guideway designs usually have grooves in them.

Figure 3 is an image of a previous design iteration wherein the bogie traveled along an I-Beam shaped

guideway. As the red arrows point out, at the switch, the bogie must travel over a groove in their rolling

surface. This problem is common to most designs. Allowing the support wheels to roll over such a

groove causes wear on the vehicle and discomfort for the passengers.

The particular I-Beam design shown above was shown to not suffer from this jolt in the ideal case, but

the realities of deflection on cantilevered pieces of the guideway made the design unviable.

Theoretical System Model
The majority of progress on the system model achieved this semester was in designating the wheel

placements during normal rolling and switching operations, as well as the basic structure of the bogie.

Other bogie subsystems have been updated to reflect changes to the overall system design. Currently,

there is no 3D assembly of the complete system model with all of its subsystem components, as our

efforts were focused on building the V1.0 Prototype.

Chassis
The structure of the bogie is comprised of three pieces: Two rolling sections or “half-bogies”, and one

connecting segment or “H-Bar”. The Half-Bogies are not constrained for rotation on the horizontal axis

22

perpendicular to the guideway direction if they are not attached to the H-bar. Both half-bogies can

rotate along a vertical axis with respect to the H-bar to enable travel through turns.

Figure 4: Solidworks rendering of Superway Bogie Prototype V1.0

The H-Bar is what attaches to the roof of the cabin and bears the weight of the cabin and its occupants.

It is also a potential mounting point for other components which may be necessary in a complete

design.

Wheels

The wheels on each half-bogie serve particular purposes. As colored in Figure 4 above, the red wheels

are polyurethane and serve to keep the bogie vertical in the guideway and to rotate it as it goes through

a curve.

The grey wheels are steel, and support the weight of the pod car. Only one of the two wheels on each

half-bogie are needed to support the weight of the podcar. During normal operation, one support wheel

is not in contact with the guideway.

The green wheels serve to keep the support wheels on the guideway rail. Though not shown in Figure 4,

another green wheel is present on the bare axle in Figure 4, which serves to sandwich the support rail of

the guideway and keep the support wheel in position. This also functions as part of the switching

mechanism which is discussed below.

Suspension has been deemed unnecessary for the following reasons. Firstly unlike a road surface, we

have precise control over the rolling surface for the bogie, and steel is exceptionally smooth. Secondly,

being a suspended design, the walls of the cabin and the weight-bearing members over distance act like

a spring-damper system, alleviating small amounts of noise and vibration. Thirdly, most other

suspended systems have no suspension system to speak of. If suspension was deemed important for

23

passenger comfort, it could be placed at the half-bogie H-bar interface or between the H-Bar and the

cabin.

Iterative Design Process

As discussed above, arriving at this chassis wheel placement design is the result of multiple iterations of

guideway and bogie designs.

Figure 5a: Square Split-Bogie Design

Figure 5b: Tubular Bogie Design

Figure 5c: I-Beam Design

Initial designs were based on the 1/12 scale model built by last year’s team, wherein the guideway was a

square tube with a groove cut in the bottom for cabin support. It was decided early on to change to a

circular cross section to improve aesthetics and wind loading properties. Avoidance of the "groove

24

bump" phenomenon was attributed to the steering system, which provides a moment arm resisting the

wheel falling into the groove, though flexure of the bogie could still make “groove bump” present a

problem.

The idea to use half-bogies originated from the split-bogie design shown in figure 5a. This minimizes the

widening of the guideway necessary in a corner

The tubular design shown in figure 5b sought to allow rotation of the bogie in the tube rather than hinge

the cabin from the bogie to allow banking during cornering.

Both tubular guideway designs were ultimately rejected due to stiffness concerns from the guideway

team, wherein the I-Beam design was developed. Details of the I-Beam design can be found in last

semester’s report. The design was shown to travel through a switch with no “groove bump” in the ideal

case of zero guideway deflection.

Collaboration with Beamways

The Bogie Team has had the distinct pleasure of working with Bengt Gustafsson of Beamways AB from

Sweden. In January 2014, Bengt presented his design for a suspended ATN bogie, shown in Figure 6a

below. Initial concerns with the complexity of the bogie and the sheer number of wheels created

skepticism. When analyzing the Beamways Guideway Switch, shown in Figure 6b, we presented Bengt

with the idea of consolidating the support rail and the steering rail. He was satisfied with us pursuing

that design change, and agreed on neutral ground for intellectual property.

Figure 6a: Beamways Bogie in Guideway

25

Figure 6b: Beamways Guideway Switch

Another notable design difference is that the switching mechanism on the Beamways design operates

on a slider rather than a rocker. This enables guideway override of the steering arm if the mechanism to

move it is broken, eliminating the need for a bogie with a broken steering mechanism to come to a stop.

It is also important to note that all wheels on the Bogie Prototype V1.0 are property of Beamways AB

and are in the custody of the Spartan Superway project with the understanding that our development of

the prototype is valuable to Beamways. Should Beamways deem the Superway Prototype too divergent

from their design intentions, they reserve the right to recall their property.

Propulsion
Propulsion for the podcar is achieved by electric motors in the half-bogie bodies. Driving force will be

applied to the ceiling of the guideway, and power for the motors will come from an electric power

conduit in the guideway.

Motors

Figure 7: A Wheel Hub Motor (Image Credit: www.proteanelectric.com)

The motors used for the propulsion system are electric wheel hub motors with self-contained friction

brakes. These motors are capable of regenerative braking as well, and may need external liquid cooling.

26

The wheel pokes up through the top of the half-bogies, between the upper wheels. This is identical to

the Beamways Design.

Traction System

Figure 8: Traction System

In order to force the drive wheel into the ceiling of the guideway for traction, a mechanism which can

move the drive wheel is installed in the bogie. This system can increase traction in order to enable

climbing of steep grades and can reduce rolling friction by dropping the drive wheel down into the body

of the bogie. It should be noted that increasing force from the traction system increases the reaction

forces all over the bogie where it contacts the guideway.

A potential configuration for the traction system is shown in Figure 8. The linear actuator (pink) changes

the angle of the axle arm (black) pressing the drive wheel (blue) into the guideway (red).

Undetermined Components

Figure 9: High Voltage paddles on Bart (Image Credit: www.bart.gov)

27

The remainder of the propulsion system, namely the cooling system, power supply, and power interface

have yet to be designed, and are dependent of the requirements of the specific wheel hub motor. If the

power supply can take single phase power, then a single powered rail can be attached to the guideway

wall, with a high-voltage paddle making contact with it such as on Bart. Ground can be transmitted

through the support wheel into the guideway.

Switching Mechanism
The method of guideway switching for the Superway ATN is both elegant and effective. Figure 10 shows

the guideway switch.

Figure 10a: Guideway Switch Entry

When approaching a guideway switch, the bogie rolls onto a second support rail on the other side of the

bogie. The two support rails sandwich the bogie between them, making contact with the green wheels

at the bottom of the bogie.

28

Figure 10b: Guideway Switch Exit

With the bogie securely supported and constrained, the wheel which gripped the outside of the support

rail (herein called the steering wheel) can be safely moved. If it remains in place, it the bogie will follow

the support rail it is grabbing. If it moves and grabs the other support rail, the bogie will follow the other

support rail instead.

Movement of the steering wheel is achieved with a rocker arm, as shown in in Figure 11. The actuation

method of the steering arm is not yet determined. During normal operation, the steering wheel must

remain in contact with the support rail to ensure safe operation, and it cannot require power to do so.

Latches (shown in pink) will hold the steering arm in the position it is in. They will be mechanically

released when the bogie is in the section of Guideway where both support rails are present. This can be

achieved mechanically or electronically.

29

Figure 11: Bogie Cross-Section with Steering Arm

For a brief time, the wheels at the top of the bogie must be unconstrained during a guideway switch.

This is a problem because those wheels provide the moment which counteracts the moment caused by

the offset of the center of mass from the support rail. To keep the bogie in the track, a flange is added

for a few meters (visible in Figure 10a). An additional wheel is added to each side of the steering arm

which engages that flange and prevents the bogie from falling out of the guideway. Those additional

wheels are not shown here.

Sway Control
Another undetermined element is the sway control system. In order to provide a comfortable ride for

the passengers while navigating guideway corners at speed, the cabin must be allowed to tilt, banking

during cornering. While that could be accomplished passively with a hinge, the cabin would rock back

and forth during passenger entrance and egress, and wind would make an uncomfortable ride.

Therefore, an active system for controlling the swaying motion of the cabin is needed.

30

There is the potential to allow 2-axis sway to occur, so that the pod car can accelerate faster than would

otherwise be comfortable, and so the pod car could climb steep inclines without tilting at an alarming

angle to the occupants.

Emergency Systems
In the case of an emergency, backup systems are required in an ATN pod car to ensure that the network

is a safe mode of transportation.

Emergency Brake

In order to stop the Bogie if the propulsion system fails to, a simple friction brake functions as an

emergency brake. This is especially important considering the propulsion system’s braking ability is

dependent on both the wheel hub motor’s friction brake and the traction system’s actuation.

Figure 12: Brake Pads (Image Credit: www.zigwheels.com)

Brake pads, as shown above, can be pressed into the guideway, possibly clamping the support rail.

Actuation of this system must be able to be triggered remotely and by passengers in the cabin.

Tow Bogie

In order to move non-functional bogies if they break down, a bogie with no cabin can be employed. In

order for the bogie to safely control the broken pod car, it must be able to interface with a rigid part of

the frame. If possible, it should also be able to actuate the steering mechanism on the broken bogie.

Maker Faire Model

31

Figure 13: Superway Bogie Protoype V1.0 shortly after being constructed

In order to generate public interest in our project, as well as to show off our engineering prowess, the

Superway Bogie Prototype V1.0 was built for display at Maker Faire. It is a full-scale prototype, utilizing

the same wheels in the same configuration as are intended for the final design.

Our design of the frame was limited to our manufacturing ability. The frame was built out of plate steel,

plasma cut by a CNC machine, and various sizes of tubes and axles. Analysis suggests that the bogie can

handle around 1000 lb of weight, which is not enough for the full cabin, but should be enough to carry

one to two people for demonstration purposes.

In leu of a steering rocker arm, the steering mechanism is simulated by a 2”x2” square pipe with an axle

and wheel on it which fits into a receiver tube located at the bottom of the bogie. To simulate the

switching of the steering arm, the pipes can be removed and inserted from the other side of the bogie. A

¾” axle holds the pipe in place. Because of the low clearance for the steering wheel on the wooden

guideway model, a collar clamp couldn’t fit above it, so inverting the steering arm causes the spacers

and wheel to fall off.

Though a propulsion system was not used, 2” round pipe was installed with collar clamps to be a

mounting point for such a system in the future. The receiver tube for the steering pipe can also be a

mounting point for a true rocker mechanism for V1.1.

Finite Element Analysis
Creo Parametric 2.0 was used to render and perform a static finite element analysis (FEA) on the Maker

Faire exhibition model of the bogie. Two versions of the full bogie model were created: one specific for

static analysis, and another for detailed assembly. In the analysis-specific version (Figure 14), each bogie

32

unit was made as a single part and joined together in an assembly with the center h-beam, in order to

simplify the number of elements and reduce analysis time.

The detailed version of the model recognizes all of the separate components needed for assembly,

allowing individual editing of components and detailed exploded views as shown in Figure 15. A static

analysis of this model could not successfully be performed due to continuous errors in Creo’s solver. The

center h-beams rendered in the models do not depict the actual design in the Maker Faire model. This is

due to the later timing of design decisions and construction. A simplified point/surface of loading was

made in this model.

Figure 14: Solid FEA Model (Simplification)

33

Figure 15: Exploded view of a half-bogie (Full Assembly)

Static Analysis Preparation

The loaded and constrained model is shown in Figure 16. The vertical support wheels (gold) and upper

guide wheels (red) are constrained in the same manner that the bogie would interface with the

guideway under load. The upper wheels required constraints in all directions in order to meet Creo’s

requisite of sufficiently constrained entities. A 500lbf load was applied to the bottom end of the center

h-beam. While that weight figure was much larger than the actual mock-up cabin, there was concern for

unexpected loads – such as additional loading or leaning on the cabin.

Figure 16: Bogie Model with loads and constraints

34

The goal of this analysis was to determine von Mises stress to determine safety factor, and deflection to

identify any considerable deformation that could cause the bogie to slip out of the guideway. Wind

loads were not addressed at the time of analysis because of the late arrival of the mock up cabin to

determine dimensions for rendering.

The analysis was set as a Multi-Pass Static Analysis with a polynomial order of 9 and convergence set to

10%. With the expectation to materialize for Maker Faire, no shell idealizations were utilized as they

would further simplify the analysis, but at the cost of accuracy; therefore the model was treated entirely

as 3D solids. All parts were assigned as steel per Creo’s Materials Assignment menu. The polyurethane

layers on the wheels were mainly intended for noise and interface wear reduction, as opposed to

attributing to the strength of the wheels which are dominantly steel.

Using the AutoGEM feature in Creo, element sizing was further refined by decreasing maximum edge

turn from 95 to 30 degrees to better recognize round features of the model. The AutoGEM graphic and

summary is shown in Figure 17. with the statistical data regarding the types and amounts of elements

subject to analysis.

Figure 17: Bogie AutoGEM graphic and summary

35

Results

Figure 18: Bogie von-Mises stress fringe plot

Figure 19: Bogie Deflection fringe plot

Figure 18 and figure 19 show the von Mises and deflection fringe plots respectively. The static analysis

required 7 passes to reach its maximum polynomial order of 9. As reported in the .RPT file (see

Appendix K: Bogie Static Analysis), the maximum von Mises stress was 14541.46psi, and concentrated in

the middle of the center h-beam, particularly at the junctions. However, the convergence of this value

was only 13% as opposed to the 10% as set in the preliminary analysis menu, which could lead to the

possibility of a higher von Mises stress value. This value results in a safety factor of 2.88, as it occurs on

the A500 Grade B steel tubing which has a yield strength of 42,000psi.

36

When accounting the weight of the actual mock-up pod to be less than the tested 500lbf, the

unsatisfactory convergence value did not guarantee a higher risk of structural failure. The maximum

deflection reported in the .RPT file was 0.01139 inches. As Figure 19 indicates, the maximum deflection

takes place again in the center h-beam, and increased levels are also found at the support wheels and

bottom end of each bogie unit. Given the small magnitude of deflection, in addition to the high safety

factor, this analysis suggested that the Maker Faire model would be able to bear static vertical loads

greater than that of the mock-up cabin.

Excel Force Model
Utilizing static force and moment equations from CE99, an excel model for forces acting on the contact

surfaces (wheels) of the bogie was generated for various scenarios. This was used to determine what

sorts of forces the various wheels would need to cope with.

Figure 20: Force Model Assumptions

One page of the workbook (shown in Figure 20) is dedicated to assumptions made about the dimensions

of the bogie and the guideway. Information such as the mass of the podcar and the distance from the

center of mass to the guideway were assumed, and can be changed as more accurate information

becomes available

Results of the model (shown in Figure 21) are hardly conclusive, given the amount of guesswork

involved, but were a good starting point to know how to load a completed bogie frame in FEA, and for

selecting wheels.

37

Figure 21: Inertial Force Excel Model Results

Construction
The construction phase of the bogie began with quarter inch thick steel metal sheets from PDM. PDM

laser cut the sheets of metal to the desired shape. All of the square tubing and solid circular bars were

purchased through PDM as well due to convenience and cost. Receiver tube was purchased as well from

an outside manufacturer to provide the necessary support and functionality for the steering arm.

Once all of the material was purchased, the square tubing and solid circular bars were cut and drilled to

specifications. Drawings are available in Appendix L: Engineering Drawings. Once all the necessary

materials were cut to size, the fitting stage began and all of the pieces were fit together to ensure that

everything was the proper length and that there was no interference.

The bogies were built one at a time by standing up two plates about 6 inches apart from one another

and sliding the proper tube or solid bar through the designated slot that was laser cut by PDM. This

allowed the bogie to stand freely and shape. The bogie was then tipped over onto its long side from the

standing position for aligning and clamping. Three solid bars were cut on the lathe to exact lengths to

ensure that a very tight tolerance was achieved. These solid bars were used as spacers to put in

between the two bogie plates so that the distance from one plate to another all throughout the bogie

was equal. Three U-shape clamps were used to clamp the plates of the bogie to the proper orientation

38

to ensure that the plates were as close to parallel as possible. Seen below in Figure 22 are images of how

the clamps and spacers were incorporated into assembling and preparing the bogie for welding.

Figure 22a: Clamps and Spacers used to keep plates parallel

Figure 22b: Tbogie clamped together on the welding table

39

A Miller MIG electric welding machine was used to provide the necessary welds to withstand the

calculated loads. Each piece of square tubing was adjusted into the exact place and then tack welded.

Once all of the square tubing was tack welded, the alignment of each of the tubes was checked to make

sure that they were all in the desired location still. Everything was still in the right position which meant

that permanent welds could be completed. Each square tube was welded all the way around to ensure

maximum bonding and strength. Figure 23a is what the welds looks like around one of the square tubes.

Figure 23a: A complete weld around one of the square tubes

The same procedure as stated above was done for the circular solid bars. Each bar was tack welded into

place and the checked for alignment. After alignment was verified, a full complete weld was done.

Figure 23b: Full weld done around solid axle bar

40

After all the welds were completed, a wire brush and grinder was used to clean and polish the welds.

The same process was done for the second bogie with alignment of the tubes and rods, tack welding,

and complete welding to ensure that both bogies were identical once completed. After both bogies

were welded in all the necessary spots, the h-bar was welded on the ground to ensure that all surfaces

were perpendicular with one another. The final step to building the bogie was to install all of the

bearings and wheels. All of the wheels fit into place as planned due to good tolerances. Below in Figure

24 is an image of the bogie fully assembled.

Figure 24: Fully Assembled Bogie

Next Steps
Though a lot of progress was made this year, only a few critical components have been fully developed.

Nearly everything other than the placement of the wheels needs design work, and the V1.0 model can

be modified and improved to more closely resemble a final bogie design. The 2013-2014 Bogie team

recommends the following aspects be considered and designed.

41

System Model Development
Though the wheel placement, the dimensions, and the distance between bogies has been constrained,

the actual structure of the frame has not. What we modeled was based on our ability to build it. In

reality, the bogie will need to be much more specialized, with cast parts and unique pieces. A bogie

frame should be developed which can withstand all the forces that it will need to in real world

operation.

Another consideration for the frame is the degree of movement for the H-Bar. The amount that the H-

bar can rotate with respect to the bogies determines our turning radius. As of right now, the H-bar hits

the plate steel with less than 10 degrees of rotation. Perhaps a design wherein the half-bogies don’t

rotate around their center could be designed, or a large connecting-rod like design could develop for the

H-bar, wherein the bogie can articulate 360 degrees, and all the weight would be supported through the

center of the connecting rod loop. This would allow the turning radius to shrink to a meter so the podcar

can turn in place, making compact stations easier to design.

All other aspects of the design which are not represented on the prototype have yet to be placed in the

system model. Continued research is called for. 2014-2015 students should be able to develop a 3D

model assembly containing all the subsystems described in this document.

Bengt Gustafsson has interesting ideas about using sliding mechanisms rather than rockers to handle the

steering wheels.

Another approach which bears some consideration, although it is problematic, is to allow the bogie to

be unpowered, and have a cable in the guideway which the bogie clamps on to like a cable car. Such a

system could reduce the possibility of podcar collisions, though it would mean coasting around junctions

or corners.

Prototype V1.1
The Prototype built for Maker Faire was specifically designed to let systems to be tacked onto it. At

minimum, the 2014-2015 students should succeed in installing a propulsion system and complete the

steering system. Even if a rocker/latch mechanism is not built, there needs to be an additional moment-

counteracting wheel for guideway junctions attached to the steering arm.

The H-bar is not difficult to replicate, and if a different shape would be beneficial for mounting

components, a new H-bar can be fabricated and installed.

The V1.0 Prototype is the first suspended ATN bogie prototype in the country, and is worth about $6000

in materials. Use it to promote the cause of ATN and adapt it to be a better demonstrator.

Scale Model with Switch
Because building a full scale guideway switch takes not just money, but land, it would be advantageous

to build a 1/12 scale model of the bogie with a working rocker steering arm and a guideway switch that

can be moved by hand. It could be built using the 3D printer, laser-cut acrylic, or ME41 shop skills. The

42

rocker/steering arm can be screwed into position. This will be useful in proving to the skeptics that our

design will cleanly navigate junctions.

43

10’

Cabin Team
After reviewing the 2012-2013 Cabin Team’s design work, the 2013-2014 Cabin Team proceeded from

where they left off. In the 2013 Fall Semester the current Cabin Team, along with the entire Superway

Team conducted a field survey of our target market to further justify the design work previously done

and the slight changes made to this years Cabin.

The biggest change was made to the Cabin’s size and interior configuration. Based on the survey 20% of

the riders interviewed mentioned that overcrowding at the station and on the trains was a major issue

for them, especially during commuter hours. Therefore, the Cabin Team decided to slightly increase the

interior size of the previously designed cabin from 80 inches to 120 inches long illustrated in Figure 1.

This extra length still allows for 4 people sitting but also adds more room for those that travel with

bicycles and extra personal items while not feeling crammed and still enjoy a comfortable ride. In

conjunction with the Industrial Design Team the Cabin Team also decided to add a bench on one side to

accommodate families or riders with a more personal relationship.

Figure 10. Interior dimensions of cabin

44

Theoretical System Model

Frame
The frame structure is always a main concern when it comes to vehicles. It allows the vehicles to

properly support the passengers and hold everything together. Of the 3 conceptual designs of the cabin

developed in the 2013 Fall Semester the frame shown in Figure 2 is the one that was chosen. The frame

was chosen based on ease of FEA simulation and the ease of manufacturability once the cabin goes into

construction phase in the future. The frame base shown in Figure 3, where most of the load will be

concentrated, was derived and slightly modified from the frame design developed last semester.

The cabin frame must have a durable and lightweight structure, while being cost efficient for

manufacturing purposes. Based on common automobile chassis and frames the team decided to use

hollow aluminum 1060 for both side sub-frames and hollow alloy steel for center main frame. The

purpose for using aluminum for the side sub-frames is because it is lighter, meaning it will allow the

cabin to use less energy and higher performance.

According to the Center for Disease Control and Prevention (CDC) the average male weighs 195lbs. The

frame was designed to support a max of 6 men at 250lbs, which is a safety factor of 0.78, this comes to a

total of 1500lbs. For further reliability a safety factor of 2 was added to bring the total allowable

supported by the cabin to 3000lbs.

Figure 11. Original frame modeled with Solidworks

Sub-frame
Main-frame

45

Figure 12. Modified main-frame section of cabin

Finite Element Analysis (FEA) was done using Creo Parametric 2.0 and the results are shown in Figure 4

and Table 2. The cabin is overly designed and will hand the load of passengers with minimum stress and

negligible deflection.

Figure 13. Creo Parametric 2.0 FEA results for von Mises (left) and displacement (right)

46

Table 4 - Frame Properties

Tube Materials Aluminum 1060 and Alloy Steel

Materials Tubing Size 1’’ OD x 0.095’’ Thickness

Frame Weight 266.88 lbs

Table 5 - FEA results

FEA Software Creo Parametric 2.0

Constraints Fixed at bogie attachment locations

Passes 6

Yield Strength 63,100 psi

Maximum von Mises 47,323.5 psi

Maximum displacement 0.00576 in

Factor of Safety 2

The frame was modeled based on the several industrial designs and the cabin team decided to go with

the trapezoid prism. This frame structure is aerodynamically efficient as well as esthetically pleasing. For

this design, the cabin would be able to withstand an incoming air velocity between 25mph to 50mph.

The team calculated the cabin would travel at an average speed of 35mph. Although 30% higher, due to

the increased size, than 2012-2013 Cabin Team’s design, while assuming the same drag coefficient of

0.8, from Figure 5, the following calculations shown below show an acceptable drag force. To

compensate for the increased drag force the dual material frame is lighter than previous Cabin Team’s

design. This will allow the cabin to keep the power consumption to a minimum.

47

Figure 14. Drag coefficents

8’

2’

8.2462’

Figure 15. Side cross sectional view of sub-frame dimensions

48

Table 6 - Unit conversions

 English (in) SI (m)

a 2 0.6096

b 6 1.8288

c 8 1.8288

d 8.2462 2.5134

Area (b*d) 49.4772 4.5965

Aerodynamic resistance formula:

𝐹𝐷 =
1

2
∗ 𝜌 ∗ 𝑣2 ∗ 𝐶𝐷 ∗ 𝐴

=
1

2
∗ 1.225 ∗ 15.652 ∗ 0.8 ∗ 4.5965 = 𝟓𝟓𝟏. 𝟔𝑵

Table 7 - Equation symbols and values

Variable Symbol Value Unit

Drag Force FD 551.6 Newtons

Density 𝜌 1.225 kg/m3

Figure 16. Front cross sectional view of sub-frame dimensions

49

Velocity v 15.65 m/s

Drag Coefficient CD 0.8 unitless

Area A 4.5965 m2

Exterior
The exterior of the cabin is always the main concern for aesthetically pleasing and aerodynamics

purposes illustrated in Figure 8. Based on the calculation, the team decided to go with a trapezoid

shaped cabin to allow bi-directional travel with the least amount of drag force. The cabin will have doors

on both sides to provide bi-directional entrance and exit for the passengers. The doors are 3ft wide to

be ADA compliant and 7ft tall the height of a standard door. Providing enough of a scenic view for riders

to enjoy was taken into the design consideration therefore, the doors come with a 42.38 inches tall

window, shown in Figure 9 and has 31.8in tall side windows for seating passengers. Based on the transit

industry, most of the vehicles are using laminated glass to reduce the cause of injury if it breaks. The

laminated glass will be manufactured by using 2 pieces of glass and one piece of transparent polyvinyl

butyl plastic (PVB).

Figure 17. Exterior of the cabin

50

Figure 9. Door windows

Interior

The interior of the cabin is always the main concern for accommodating the passenger’s needs. As

previously mentioned, in order to be able to fit 4 to 6 passengers and provide storage space, the team

decided to design the interior to be 10’ x 6’ x 8’. The interior of the cabin includes 2 one seaters and 1

two seater bench. Both seats and bench will be foldable and come from Freedman Seating, a company

found by the 2012-2013 Cabin Team that builds seats for public transit use, Figure 10. The seats are

foldable to easily create space for standing passengers and wheelchairs. There is 1.5 ft space to allow

passengers to store bikes in middle of the 2 one seaters, Figure 11.

Figure 18. CitiSeat by Freedman Seating

51

Figure 19. Distance between seats for bikes and other personal belongings

52

Figure 20. Side view of interior

Figure 21. The 2 seater bench

53

Figure 22. Section view showing the door mat and hand rails

Maker Faire Model
For the Maker Faire model, the cabin was donated by one of our sponsors, shown in Figure 15.

Although not to full scale the cabin was chosen due to time constraints and because it easily

represented the concept of how an actual cabin would attach to the bogie. Initially the model was a

yellow snow coach. As a transformation to a more visually appealing cabin the team power washed then

painted the exterior with multiple coats of white plastic dip spray paint and used a blue glossy interior

paint for the strip down the middle, Figure 16 and Figure 17. Logo decals were added on either side of

the cabin to give it a nice touch.

54

Figure 23. Original condition of donated snow coach

Figure 24. Finished cabin connected to the bogie by the H-bar at the warehouse

55

Figure 25. Completely assembled system at the 2014 Bay Area Maker Faire

The CAD model with the H-bar attachment for the bogie is shown in Figure 18. The cabin is 105 inches

long and 45 inches wide. It has 3 windows on both sides; the back 2 windows are 28” x 28”. The

thickness of the cabin is approximately 1.5 inches.

Figure 26. The Maker Faire Model with attachment modeled in Solidworks

In order to able to support and attach the cabin and the bogie together, the Cabin and Bogie Teams

decided to attach a steel H-bar with a supportive cabin flat bar.

56

Figure 27. H-bar attachement

In Figure 19, the H-bar is 2” x 2” with the thickness of 0.125 inches. The extension bar shares the same

geometry dimensions and it is 21 inches long. The screw hole is 2 inches above the bottom edge with a 1

inch diameter and a 1.25 inch spacer.

Figure 28. Supportive cabin flat bar

In Figure 20, the supportive cabin flat bar is 2x1in with the thickness of 0.125in. The flat bar will be

installed from the inside of cabin and it will be supported by 4 screws on each flat bar. The centered

57

extension is 1.75” x1.75” with the thickness of 0.125 inches and it is 6 inches long. Also, it will go

through the cabin and attach to the H-bar, which will be connected with a 1 inch screw.

Figure 29. FEA of displacement of the screw with applied load using Solidworks

In Figure 21 and Figure 22, shows the 1 inch screw would be fully able to support the cabin. In this case,

the team applied 300lb on the screw, which has 0.000042mm displacement and the applied load is

greater than the cabin weigh (200lb).

Figure 30. FEA of stress on the screw with applied load using Solidworks

Based on our analysis, we have concluded with this attachment design for the bogie and the cabin. This

design would be able to easily attach and detach on the bogie.

58

Next Steps
Moving forward a functional full size model needs to be constructed with the advised design and

materials. In order to accomplish this a scale model should be tested in a wind tunnel to determine the

aerodynamic efficiency of the cabin design along with a more rigorous finite element analysis on the

frame structure. Interior design and amenities need to begin to be incorporated into the cabin as well

as user interaction capabilities. A cost analysis needs to be done on the selected materials to determine

feasibility with allotted budget

Solar Team
What is the best way to spread the word about a solar powered Automated Transit Network? SMSSV

wants more people in the public to learn about the idea of a solar powered ATN system, and the

construction of a life size model at the annual Maker Faire in San Mateo, California would be the way to

do that. The Maker Faire is an annual get together of thousands of innovators, inventors, and artists in

the technology community. The goal of the Maker Faire is to bring together a group of like-minded

individuals to inspire others to create, invent, or make something, anything, that can possibly improve

our daily lives or for fun. SMSSV wants to show others why an ATN would be more cost effective than

other public transportation networks that have been proposed and explain how the system is more

sustainable than other alternatives. With a life size model, a 1/12 scale running track with moving pods,

and a replica model of what a pod car looks and feels like, others will be able to better understand what

ATN is all about.

Maker Faire Model
The main objective for the solar team in this second semester of the SMSSV project is to construct a life

size solar panel frame that would then mount onto the guideway that the suspended pod car would be

running on. The solar panel frame would be highly engineered to withstand the loads, stresses, and

weather conditions that would occur in the area for the Maker Faire. From last semester, design

requirements and design specifications have already been thought out for the final design. For the

Maker Faire design, the same criteria will be implemented in order to see if those specifications will hold

up to real world manufacturability. The five subsystems that will be used for the Maker Faire model will

be:

- Power Collection

- Power Transfer

- Frame

- Guideway Mount

- Tracking

Each one of these subsystems will be driven by safety, system efficiency, manufacturability, and

operation. This is to ensure that the Maker Faire model is created with the mindset that the model is a

prototype to a real world model that can and will be made in the near future.

Power Collection
The means by which all power is to be generated for the Spartan Superway is through the solar power

system. The goal is to have an efficient system that balances individual module efficiency and cost.

Through much research, the modules incorporated into the final design are SunPower X21-345 Panels.

It was determined by the Solar Team that these panels would best fit the design criteria established in

the Fall Semester. The design is centered on efficiency, and the SunPower X21-345 panels boast a 21.5%

efficiency rating, which is higher than most other commercial competitors. The more efficient each

module is, the better the entire system will perform.

An added benefit in the decision of using the SunPower X21-345 panels is that they are among one of

the most favorably aesthetic panels on the market.

60

Figure 31: SunPower X21-345

Power Transfer
Once the energy is gathered from the sun to the SunPower X21-345 modules, it must then be

transferred throughout the system to provide power to the electrical systems within the Cabin, Bogie,

Guideway, and Station. To accomplish this, the Solar Team has sourced an inverter that will provide a

high efficiency as well as hold up to the robust power demands of the system. The method of power

transfer the system will be using an Enphase M250 Microinverter. This inverter will be able to handle all

possible loads from the solar modules, as well as preform at approximately 96% efficiency. These two

points were critical in the Solar Team’s assessment, but there are many more benefits. The Enphase

M250 has a simple design, making it every easy to install and blend in to any location. In this micro

inverter, the DC circuit is isolated and insulated from Ground, so no ground electrode conductor is

required. This saves expenses on extra parts and labor. The Enphase M250 also has an option of

including a 25 year warranty, insuring the reliability of the product.

61

Figure 32: Enphase M250 Microinverter

Although the goal of the Solar Team is to provide 100% of the power to the Spartan Superway system, it

is still important that the inverters be tied to the grid. This is more a safety precaution and a backup

plan within the system. It is always important to be connected to the grid in case of any power failure

issues. This ensures that the Spartan Superway will be able to operate properly at all times.

Figure 33: Power Distribution Diagram

62

Frame
The design behind the Maker Faire model was to keep it simple, yet make sure it fulfills its requirements

of holding up the solar panels used to collect energy and to connect to the guideway itself. The material

that was chosen was Aluminum because it is lightweight, easy to work with, yet durable. A 3” x 3”

square beam was used for the frame with a 1/8” thickness. The design was a simple H-bar design with

an overall dimension of 18ft x 2 ½ ft. The dimensions are based on the size of the solar panels used as

well as the decision of how long of a guideway was to be made for the Maker Faire model. The frame is

consisted of four pieces that were TIG welded together by the SJSU Civil Engineering department’s

technician, Pat Joyce. Pat made beautiful, strong welds on the pieces for the H-bar design so that they

would be strong enough to hold together no matter what.

The structural integrity of the frame was also very important because real life applications were

implemented in the Maker Faire model in order to see if our design model would be successful.

Therefore, extreme weather conditions were considered as a precaution. Such conditions included

maximum operating temperature of 133oF, minimum operating temperature of -20oF, maximum gust of

69mph, maximum sustained winds of 9.96mph, maximum days of rain of 7 days, maximum days of snow

of 2 days, and just in case, maximum earthquake strength of 9.48 on the Richter scale. Of all these

conditions the one that was most realistic was the maximum gusts because the solar panels would be so

high up above the guideway and attached to the guideway columns, high winds in the San Mateo area

could definitely become a factor in tipping the whole structure over if not engineered properly.

Figure 34. Simple H-bar design of the solar panel frame with aluminum as the material of choice.

63

Figure 35. SJSU Civil Engineering Technician, Pat Joice doing the welding of the individual pieces of the solar panel frame.

Figure 36. Final outcome of the aluminum solar panel frame with the thin film solar panels that would be later on mounted onto
the frame itself.

A static failure analysis was performed in order to verify the design specifications set by the engineering

team. This simulation was first performed at the H-frame itself to consider the extreme wind loads of

788 lbf. This design parameter was derived from assuming a gust wind force of 69 mph loaded onto the

H-frame. As a result, a maximum Von Mises Stress point occurred at the center of the frame (9 ft from

the end points). Here we can see a maximum Von Mises Stress of 3000 psi and maximum displacement

of 1.173e-001 inches.

64

Figure 38. Von Mises Stress Plot

Fi

Figure 39. Displacement Plot

Figure 37. Wind Load Simulation – Static Test

65

Guideway Mount
The mounting of the solar frame to the guideway is important because the structural integrity of the

overall system depends on it. Just like the theoretical model, if by some chance the solar frame gets

dismounted from the guideway then the whole system would lose a portion of its power because the

solar panels are connected to the frame. To ensure a solid interface between the solar frame and the

guideway, engineering analysis must be taken into account before the actual construction and

manufacturing of the mounts. Finite Element Analysis for loads, stresses due to loads, and displacement

were done on two parts, the frame mount and the guideway mount. The two mounts are between a

three foot column to increase the visibility of the solar panels and increase its efficiency. Both mounts

were also designed for easy installation. ½ inch hole were to be drilled into the mounts and the

guideway with a bolt to connect the two together. Once the guideway mount and guideway column are

aligned, the two can be easily bolted together, and likewise for the frame mount. This is a necessary

step for the final theoretical design as well because in real world applications, SMSSV wants to design a

system that saves time and money when it comes to installation.

As a result of the discussion of the mounting points with the solar panel to the guideway, a static failure

analysis was performed at both mounts on each column in order to verify the satisfaction of engineering

design. From the analysis, loads were applied on the guideway and frame mount at the surfaces where

most deflection would be seen due to wind loads and fixed where the machine screws would attach to

the guideway and frame column. From the images as a result from the analysis seen below, the highest

stresses were seen at the guideway mount showing a maximum Von Mises Stress of 30 ksi, which

showed the lowest safety factor of 1.67. This is due to the mount showing deflections on the H-frame

due to high wind loads and potential failure locations in the compression of the mount.

Figure 40. Frame Mount – Static Analysis Setup

66

Figure 41. Frame Mount - Von Mises Stress Plot

Figure 42. Frame Mount – Displacement Plot

67

Figure 43. Guideway Mount – Static Analysis Setup

Figure 44. Guideway Mount - Von Mises Stress Plot

68

Figure 45. Guideway Mount – Displacement Plot

Figure 46. Solar Panel Frame – Maker Faire Final Design

69

Figure 47. Guideway with Solar Panels – Maker Faire Final Design

Tracking
For the sake of the Maker Faire, tracking was not implemented into the design. The reason for this was

because of the limited time we had to create the model and to test out its functionality. A realistic

model would be static to represent how the solar panels would look on top of the guideway and to show

how the solar panels collect energy for the system. The final theoretical design was designed for tracking

to be more efficient by tracking the path of the sun throughout the day, so if the static mount works

than the tracking system would be even more efficient.

Maximum efficiency drives the incorporation of solar tracking into the solar power system. To make the

design as efficient as possible, the control system is designed for optimized system performance. A

robust design is incorporated to ensure a durable drive unit and control unit. Tracking stability is a

required feature of the system, and is integrated into the design via the control system and the physical

design of the overall solar system.

Theoretical System Model

Design Requirements and specifications
The Superway Solar Power System design requirements are based weeks of research, interviews with

solar engineering professionals, and team brainstorming sessions. Per accepted systems engineering

practice, each design requirement is expressed as a single, discrete statement describing a specific need,

function, performance level, quality, or constraint relevant to the system.

70

The list of requirements has been broken down into Goals & Objectives at various Tier Levels. The top-

level goals and objectives are noted as [Tier 0] requirements. As top-level requirements, these

objectives address the most basic solar power generation and functionality of the system along with

additional goals of interest to the entire Superway Team. All lower Tier requirements are ultimately

derived from these top-level goals and objectives.

The overall scope of the Superway Solar power system is to design and implement a system of energy

generation that produces energy efficiently, reliably, and is easy to manufacture. The overall scope leads

to the [Tier 0] design goals and objectives. The most important [Tier 0] goal that is executed in the

design is ensuring that the Solar Power system generates enough energy to power the ATN system in its

entirety, while remaining as a reliable source during the lifetime of panels. The execution of this goal is

seen in the stretch of solar panels above every inch of the guideway. This maximizes the possible surface

area available for the panels, while not having to take up any space on the ground. There is also an

aesthetic appeal to the user seeing that form of transportation they are using is powered with a

completely renewable source of energy. Another important [Tier 0] goal applied to the final design is to

maximize the overall efficiency of the system. This goal is executed in our design through a single-axis

tracking system. Applying this tracking system ensures that the solar panels will have the maximum

exposure to sunlight at any given time during the day.

Throughout the design process the Solar Team has closely studied the works from last year’s report in

order to better this year’s design. Along with last year’s report, the solar team has conducted research

on current weather conditions in Silicon Valley, other competitive solar panel companies, other possible

inverters, and also tracking systems that are currently available. Comparisons and information on

research are found in the Appendices B, C, and D.

In order to account for a situation that might occur that are out of our control, a safety factor of 1.2 is

calculated into the team’s final specifications. Knowing the maximum and minimum temperatures that

the system can handle in the Silicon Valley area is crucial in order for the system to not overheat or

freeze over. The maximum and minimum operating temperatures that we calculated were 133oF and-

20oF, respectively. Wind is a major factor when it comes to safety of solar panels because high winds can

dismantle solar panel setup or even shift its position which would result in inefficiency. A maximum gust

of 69 mph and maximum sustained winds of 9.96mph is factored into the overall system. Another

common weather factor that the team is considered is rain. The amount of rain can definitely affect the

energy output if there are too many days of rain and not enough days of sun. A maximum of seven days

of rain is accounted into the overall system. Although Silicon Valley has not experienced snow since

1976, as a precautionary measure, a maximum of 2 days of snow is also factored into the overall system.

Lastly, the most common natural disaster that occurs in the Bay Area is earthquakes. These usually

occur unannounced and for an unpredictable amount of time, so the worst case scenario is accounted

for. On that note, the system is designed to sustain a maximum earthquake of 9.48 on the Richter scale.

Along with the overall system specifications to operate safely and normally, the overall system design

also has specifications. In order for the solar system to transfer the energy output into the ATN,

specifications have been determined for the local electrical grid. The voltage connections to the grid

should are 208, 240, 277, 400, and 480 VAC. Also, the typical frequency synchronization is 60 Hz. Since

the module system can induce an excess amount of energy the power transfer system can handle, a

maximum produced power of 13kW requirement is applied. Although a single-axis tracking system is

71

implemented in the final design, it is important that the system has flexibility with rotation for the

purpose of maintenance. With respect to rotation, the maximum vertical rotation is 360o and a

horizontal rotation of 180o. The mount that will hold that solar panels is designed to hold a maximum of

8 panels and is able to support a combined weight of 537.6 pounds (67.2 lbs. x 8 panels, with 1.2 safety

factor applied). Lastly, the overall system is required to support both off-grid and grid-tie inverters up to

15kW of power.

Conceptual Design
In order to evaluate the proper design, Pugh’s method is used to determine relative importance with

alternative design concepts in a basic decision matrix. This method is chosen instead of the robust

decision matrix due to the evaluation being used to determine preliminary design parameters which will

have more detail once a specific system is chosen. In this case four different design concepts for system

specification were taken into account as seen in the figures below.

Figure 48. Static Mount Concept

Table 8. Alternative Concepts for Design Consideration.

72

Figure 49. Single Axis Tracking on a Horizontal Axis.

Figure 50. Single Axis Tracking System on a Vertical Axis

Figure 51. Single Axis Tracking System on a Tilted Axis

The four design concepts chosen were evaluated with chosen parameters including relative importance

in order to decide which system is preferred based on the criteria shown in Table 2.

73

Table 9. Criteria for Basic Decision Matrix

Table 10. Basic Decision Matrix

Based on the evaluation of the design concepts in the basic decision matrix, the most important factor

taken into consideration is the manufacturability and power generation efficiency of the solar mount.

With these two factors along with the other parameters chosen, the results indicate that a single-axis

solar tracking system on a vertical axis is the best design concept to be used when considering the solar

panel mount design. This design concept seems to be the easiest system to design, manufacture and

maintain because of less moving parts in this type of single-axis tracking system. The following figures

show 3 dimensional models of the final concepts evaluated. Figure 7 is the final concept chosen for

further design and analysis.

74

Figure 52. 3D cad design of initial brainstorm session designs.

Figure 53. 3D cad design cut out of single axis system from brainstorm sessions.

75

Figure 54. 3D cad design of single axis tracker concept derived from brainstorm sessions.

76

Figure 55. 3D cad design of horizontal single axis tracker derived from brainstorm session.

Figure 56. 3D cad design of tilted tracker derived from brainstorm session.

77

Next Steps
The final design is a single-axis tracking system and that evolves from research conducted at the initial

stages of the design process. The next step in the project is to implement the specifications and do

more in depth analysis on life cycles, critical stresses, costs of materials, construct a full scale prototype.

The Life cycle analysis is to ensure that the solar system can last through the elements of nature and up

time. Critical stress analysis is essential to understand how the mount is able to hold the solar panels

and withstand the forces of the solar panels and other environmental factors. The cost analysis is to get

an understanding of how much money the final design will cost. Besides this kind of analysis, it is

important to come up with a system to install the design efficiently. If the guideway towers are going to

be high above the ground, it is most efficient to assemble everything on the ground and use a system of

some sort to hoist the structures safely into position. Another design feature that requires further

development is the power transfer mechanism and how it integrates with the final design of the bogie

and the electrical power grid.

The final design set for the maker faire was only a demonstration of the potential analysis that needs to

be done in order to create a realistic design for the ATN system. A realistic design of the system should

utilize a single axis tracking system which will require additional research and fund allocations in order

to implement a dynamic system into the SMSSV Superway project. Due to time constraints and

budgeting issues, the design of the solar power generation system was kept simple. Most of the

challenges faced were seen in the manufacturing of the frame design and additional avenues could be

explored for future designs. The mounting attachments to the guideway system were custom mounts

that were created by weldments which in the future could be improved by creating a design that utilizes

existing brackets and mounts seen on the market to ensure the feasibility of the design for the actual

system if implemented. If resources are utilized more, the cost as well as the feasibility of the design of

the solar power generation system in the future will satisfy system specifications.

78

Controls Team
The Spartan Superway Controls System sub-team (Controls Team) develops and implements the

software-related components necessary to automate the transit network. At the highest level, this

means that any scheduled trip on the Spartan Superway system will run entirely without manual

intervention, from the moment a Superway rider purchases their ticket, to when they step off the pod at

their final destination. The underlying responsibilities within the Controls System to achieve such a goal

range from manipulating the pod motors to go forward, to providing a city-wide communications

network capable of monitoring and scheduling pod travel routes.

The Controls team responsibilities primarily consist of three main areas: the network architecture, the

pod local intelligence, and a 1/12 scale physical system model. The network architecture comprises all

the front end and back end elements that process the various client/server functions, such as receiving

ride requests, scheduling pod routes, and relaying information between the main server, stations, and

pods. The pod local intelligence encompasses the software and hardware required to provide each

individual pod with sufficient onboard intelligence to allow autonomous operation, meaning that after

receiving a single message from the server, a pod will complete a trip without additional commands

from the server. The 1/12 scale system model provides the testing platform for the network

architecture and pod operations, ensuring that the two components merge seamlessly, and also serves

as a public demonstration platform during Spartan Superway exhibitions.

During the Fall 2013 semester, the Controls Team’s primary concern and goal was to develop Design

Requirements and Specifications to provide standards and guide the future development of the Spartan

Superway Controls System. With this goal achieved approximately half way through the semester, the

team proceeded focus its efforts on developing a system of electronic control units (ECUs) that could

govern individual subsystems and connect to a master device via a standardized communication

protocol.

At the beginning of the Spring 2014 semester, the confirmation of a Bay Area Maker Faire exhibition

lead to an additional goal of having the 1/12 scale model ready for public demonstration. Presenting at

Maker Faire created an opportunity to display the efforts of Spartan Superway to potentially thousands

of Silicon Valley residents. At this same time, it created an enormous amount of pressure to produce a

reliable 1/12 scale model, which ultimately lead to a simplified design that was less representative of the

full-scale design the team must simultaneously work towards.

Theoretical System Model
As previously stated, the primary components of the theoretical design at the current stage of

development are the network infrastructure and the pod-level intelligence infrastructure. Going

forward, the network infrastructure will fall within the Computer Engineering domain, and the pod-level

intelligence infrastructure will reside in the Mechanical Engineering domain. The main goal of the 2013-

2014 Controls Team was to develop a modular development platform that would facilitate independent

development of different subsystems and allow for easier changes in regards to integrating new sensors

or actuators to accomplish tasks, rather than redesigning from the ground up to accommodate new

hardware.

79

Electronic Control Unit Network
For developing the Control Systems required for the pods to function autonomously, the Controls Team

looked at similar systems of ECUs used in modern automobiles. The electronics and sensors governing

vehicle operation are networked using standardized communication protocols, which in the case of

automobiles is Controller Area Network (CAN) bus. The hardware developed by the 2013-2013 team

physically resembled this system, with the Raspberry Pi as the primary ECU and the PICAXE

microcontrollers operating as the subsystem ECUs; however, the limited capabilities of the PICAXEs

prevented the possibility of a standardized communication protocol. In addition to facilitating

independent subsystem development, a standardized communication protocol would also help the

transition to a more robust, industry-level computer system once the Controls System is sufficiently

developed.

Switching to the Arduino-compatible platform provided the greatest opportunity to proceed in the

necessary direction for a modular development platform. The first key benefit of switching to Arduino-

compatible microcontrollers is the familiarity to new Mechanical Engineering students when they join

the Spartan Superway team, as it is the platform that is taught throughout Mechatronics-concentration

classes.

The second key benefit is that it provides the greatest opportunity of scalability as the performance

needs of an individual subsystem increases or decreases, particularly in regards to the number of pins

required on a microcontroller to accommodate all the necessary sensors and actuators. Increasing

subsystem redundancy will often require the addition of more sensors to monitor or verify the states of

actuators. If a greater number of pins are required, or greater processing power, the subsystem can be

migrated from an Arduino Uno to a Due or Mega. Scaling down the subsystem could be done by

migrating to the Arduino Nano, the Teensy, or even one of the ATTiny chips.

Regardless of the size of the microcontroller used, the Arduino-compatible platform supports numerous

communication protocols either directly or through the use of Arduino shields. The most notable

protocols are Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI), and CAN bus. Although, CAN

bus is more common in industry, it is not as fully-developed within the Arduino platform as the other

protocols. The CAN shield for Arduino costs almost twice as much as the Arduino itself as well. The

chips used to produce the shield are surface-mount components, so fabricating a shield manually is cost-

prohibitive as well. After consulting the Computer Engineering students, SPI was chosen for its speed

and reliability. With SPI, the subsystem network would consist of a single master device and numerous

slave devices, which transmit data to the master device when requested by the master device.

80

Figure 57. SPI System Network. The master and slave devices share three common pins, and each slave has its own selection
pin on the master device.

In developing the Controls System with respect to the 1/12-scale model development platform, the

master device will consist of an SJOne microcontroller running FreeRTOS, a free, real-time operating

system. The SJOne is a microcontroller with an ARM Cortex-M3 processor that is exclusive to the

Computer Engineering department of San José State University, so future Computer Engineering team

members will already be familiar with its operation. Using a real-time operating system is critical for the

future development of the Controls System so that the system can respond to events in real-time rather

than waiting for prior tasks in the sequence to complete. The SJOne microcontroller also has multiple

methods of wireless communication between itself and a computer or other SJOne microcontrollers.

Figure 58. SJOne Microcontroller. The SJOne microcontroller has wireless capability and runs a real-time operating system.

Speed Control
At the end of the Fall 2013 semester, it was determined that the Speed Control System would be a state-

space system. However, after further discussion with professor Hemati, the team realized that directly

81

controlling both motor speed and acceleration was highly improbable given our current level of

knowledge and experience in control systems. As a result, it was decided to use of PID controller to

directly control the motor speed, hence the pod's speed. The acceleration limits would be met

indirectly through tunings of the PID constants. As the motors being used for the scale model remained

DC motors, the transfer function of the complete system (controller and plant) remained

𝑇(𝑠) =
𝐺𝐶(𝑠)𝐺𝑃(𝑠)

1 + 𝐺𝐶(𝑠)𝐺𝑃(𝑠)

→ 𝑇(𝑠) =
(𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖)𝐾

𝑠[(𝐽𝑠 + 𝑏)(𝐿𝑠 + 𝑅) + 𝐾2] + 𝐾(𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖)

With: Kp = Proportional control constant

 Ki = Integral control constant

 Kd = Derivative control constant

 J = Rotor moment of inertia

 b = Motor viscous friction constant

 L = Motor armature inductance

 R = Motor armature resistance

 K – Motor torque/electromotive force constant (SI units)

These motor characteristics were determined experimentally using the methods described in the

Determine Motor Specifications section. Also, changes would be made to the feedback loop of the

system. Instead of using a phototransistor to monitor the speed of the motor, an optical quadrature

encoder would be attached to the motor to read the speed of the output shaft. The sensing principle

remained relatively the same but the integrated encoder would offer better accuracy and easier

packaging. To simplify the system, the feedback gain was assumed to be unity. The input to the system

was modeled to be a step input

Figure 59. Block Diagram of Speed Control System

The PID controller was designed with two main goals: to bring the motor to the desired speed and to

maintain that speed until a new speed limit is received. To achieve these two goals, the steady state

response of the system would be the dominating aspect that dictates the design of the controller,

specifically the value of the PID constants. On the other hand, to make controlling the acceleration

indirectly possible, the controller will be tuned to meet the transient response criteria, specifically the

82

rise time of the system's step response. Per APM standards, the maximum allowable acceleration of the

pod is 0.25g (≈8.043 ft/s2). The scaled maximum speed along the 1/12th scale model was set to be 2.5

mph (≈3.667 ft/s). Consequently, the time required for the pod to move from 0-2.5mph at 0.25g

acceleration was calculated to be approximately 0.456 seconds. This value would be the rise time value

for the step response of the system.

Before designing the controller, the natural (uncompensated) step response of the plant (DC motor) was

acquired using MATLAB and is shown in Figure 60. The response showed a very fast rise time of less

than 0.006 seconds, accompanied by overshoots and a steady state error of 15.6. These response

characteristics were obviously unacceptable since the rise time was too quick, which translated to high

acceleration rate, and the significantly large steady state error which meant failure to meet desired

output.

Figure 60. Uncompensated Step Response of DC Motor

Based on the natural response, the design criteria for the controller were set as follow:

 Zero steady state error (achieving and maintaining desired speed)

 No overshoot (providing smooth acceleration)

 Lengthening rise time (limiting maximum acceleration rate to 0.25g)

Using MATLAB's pidtool() function, the controller was designed to meet the above performance

criteria. The final PID constants were determined to be:

 Kp = 0

 Ki = 0.2892

 Kd = 0

83

It is worth noticing that both the Proportional and Derivative constants were set to zero. The Derivative

term was zero because it was found that having the term in the controller had little effects on the

response of the system. Regarding the Proportional term, as the goal of the controller was to reduce

the speed of response of the system, the Proportional term, whose effects are to speed up system

response, was set to zero. Therefore, the designed controller was effectively an Integral controller

which yielded the desired step response shown in Figure 61.

Figure 61. Compensate Step Response of DC Motor

Finally, to ensure that the system was stable, the root locus of the close-loop system was plotted. Figure

62 shows that the system had the tendency to become unstable if the gain increased too much. To

ensure that this was not the case, the Bode plots of the system were created in Figure 63. The Bode

plots specified a Gain Margin of 25.5 dB and Phase Margin of -180° which indicated a stable closed-loop

system.

Unfortunately, time constraints did not allow for complete testing of the PID control code to verify that

the motors operate as intended. And thus the Maker Faire model was set to run at a fixed PWM value.

Consequently, further testing and refining of the source code included in Appendix R: Arduino PID Speed

Control Source Code is required to successfully implement the PID control system.

84

Figure 62. Root Locus of Closed-loop System

Figure 63. Bode Plots of Close-loop System

Determining motor specifications

For the speed control sub-system, Man determined that despite the motors being so small it would still

be a good idea to find all the motor specifications as a precaution. With this in mind Man and Randall

used the following guidelines in order to determine the motor characteristics.

85

Armature Resistance

The armature resistance of the motor can be described as the resistance of the windings inside of the

motor. In order to measure this, take the motor and connect it to an ohmmeter and without applying

voltage, record the resistance. Take extra precaution however and try turning the rotor to different

positions as the resistance may fluctuate. At each measurement record the resistance value and once

finished, take the average resistance.

Please note that there is a second method involving locking the rotor and applying a voltage to the

motor. While it is effective, it requires you to wait a while until you can get a resistance value. In the

meantime however, the coils are heating up and it could possibly burn out your motor. This is especially

true when you apply a high voltage to the motor.

Armature Inductance

There are two ways to measure the armature inductance. The first method is to use a LCR

measurement device that can explicitly measure the inductance. However, just like the resistance you

need to measure the inductance at different rotor angles and take the average value.

The second method requires the use of an oscilloscope and function generator. In order to get the

inductance you also need to apply the following equations as described by ctc-control.com.

𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 =
𝑝ℎ𝑎𝑠𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 = √𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒2 − 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

𝐼𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 =
𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒

2𝜋𝑥𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Where the phase voltage is a low powered AC voltage, the current is a value that needs to be measured.

Once the impedance is calculated, enter that value into the reactance equation. The resistance of the

equation is the armature resistance that was calculated earlier. In order to find the inductance the

frequency was needed in this case Man and Randall set the function generator to have a frequency of 60

Hz.

Motor Constant

In order to measure the motor constant the motor itself needs to be under no load conditions. It is

recommended that when calculating this part the input voltage should be relatively low so that the

motor doesn’t burn out. Monitor the motor until a steady state value for the current is achieved and

multiply that value by the armature resistance. At the same time find a way to measure and record the

angular velocity. Once finished apply the values to this equation in order to calculate the motor

constant.

𝐾𝑏 =
𝑉

𝜔𝑁𝐿

86

The motor constant K can also be calculated theoretically using the specifications (no-load speed and

current) provided by the motor vendor/manufacturer. NOTE: there are two different motor constants

(electromotive force constant and torque constant), if SI units are used, the two constants should have

the same numerical value.

Viscous Friction Constant

In order to calculate the viscous friction constant, once all of the other constants were found Man and

Randall entered the values into the following equation.

𝐵 =
𝐾𝑇𝐼𝑎

𝜔

Where KT is equal to Kb, assuming the measurements are in SI units, Ω is the angular velocity, and I is the

measured no load current.

Measured Motor Characteristics

Given the many disadvantages of the motors being used in the Fall semester, the team decided to use a

different motor for the scale model bogie. The newly chosen motor is a 30:1 Micro Metal Gearmotor

from Pololu that is rated at 6V. The new motor offers relatively impressive performance in terms of

torque and rpm that come in a small package. The motor also offer the versatility of attaching an optical

quadrature encoder to its rear shaft to measure rotational velocity as well as direction. Being a brushed

DC motor, the transfer function for the new motor remains the same. As a result, Randall and Man set

out to measure the motor characteristics experimentally and were able to determine the needed motor

constants.

As the wheel of the bogie has not been changed since last semester’s design, the moment of inertia

term (J) remains to be 5.051*10-7 m4.

Through experimental methods, the motor’s no-load speed (ωNL) at 6.01 V is approximately 983 rpm.

And the no-load current was measured to be 0.069 A at 6.01V.

ωNL=983 rev/min*2π1 rev*1 min/60 sec=102.94 rad/sec

The electromotive force constant of the motor can then be calculated

ωNL=VKe

→Ke=VωNL=6.01 V102.94 rad/sec=0.0584 Vrad/sec

As Ke and KT are the same numerically in SI units, the motor torque constant is

KT=Ke=0.0584 NmA

→K=0.0584

Based on these values, the motor viscous friction constant can be calculated from the equation

KTIa=bωNL

→b=KTIaωNL=(0.0584 NmA)*(0.069 A)102.94 rad/sec=3.913*10-5N.m.sec

The armature winding resistance was also measured to be about 2.895 Ω.

87

The motor inductance was indirectly measured (using CTC-Control manual) to be 0.161 H.

Navigation
The Navigation subsystem combines the previously developed Position Tracking and Guideway

Switching Control subsystems into a single subsystem. As a whole, this subsystem is one of the most

important monitoring aspects of the Superway network at the pod level, particularly in terms of system

safety. The ultimate goal of the subsystem is to guarantee that each individual pod recognizes its real-

time position on the Superway network at all times, thus minimizing the possibilities of lost pods,

mitigating collisions, and ensuring proper network navigation.

Each pod in the Superway system maintains its own Navigation subsystem to sense the location of the

pod along the guideway network on a real-time basis. Whereas the driver/conductor on a conventional

transit vehicle recognizes the vehicle’s current physical location, Superway pods are fully automated and

thus require a sensing mechanism to determine each pod’s location at all times. The importance of this

subsystem for the entire Superway network is that it allows the pod to know its exact location, even if it

is at the wrong location. Standard procedure for the Navigation system will consist of monitoring the

pod’s location on the Superway guideway network, reporting the position to the Master Device when

queried, and manipulating the guideway switch if the pod is approaching a junction and requires a path

change.

The 2013-2014 Controls team designed the system for the 1/12 scale model to accommodate the track

design and position tracking method developed by the 2012-2013 Controls team. The subsystem

hardware includes an Arduino microcontroller as the plant and two reflective object sensors equivalent

to the sensor implemented in the Speed Control subsystem. The sensors are mounted on two sides of

the model pod roof, oriented towards the track. Non-reflective, felt markers were placed on both sides

of the track at key points before, within, and after junctions. The felt markers provide sufficient contrast

against the highly-reflective, aluminum tape used for the grounding rail of the track power transmission

system. When the reflective object sensors detect change in reflected light as the pod travels across the

marker, the microcontroller will determine the position of the pod along the track by counting each

signal change on each side of the track. The markers placed along the inner edge of the track notify the

pod when it is entering or leaving a junction. The markers placed on the outer edge of the track

manipulate the solenoids used in the switching mechanism so that they are not active for too long,

preventing damage to the solenoids due to overheating. They are also used to determine when the pod

is pulling into a station.

The pod’s route is determined on the master device level using Djikstra’s algorithm, an algorithm used

to determine the shortest route between two points in node based network. In this context, each

junction serves as a node. This particular application algorithm uses an un-weighted track system,

meaning that all distances between nodes will be treated as equal. This prevents the pod from taking

shorter routes by cutting through offline station segments. The Navigation subsystem manipulates the

switch at each junction based on the route determined by the path-finding algorithm. Using this

algorithm allows the Navigation subsystem to scale to any track layout, rather than limiting it to the

current 1/12-scale track layout.

88

This setup, which utilizes reflective object sensors and felt markers as the position tracking mechanism,

was specifically designed for the 1/12 scale track, and provides very low resolution in regards to the

pods absolute position within the track network. The full-scale Navigation subsystem will likely require a

more robust sensing mechanism such as a global positioning system (GPS) to determine pod location.

As it is, Figure 64 shows the 1/12 scale model subsystem schematic with the specified hardware.

Figure 64. Navigation Subsystem. The 1/12-sclae model uses reflective object sensors and a solenoid to navigate the track
network.

In addition to the to the reflective object sensors for reading the track markers, future iterations of this

subsystem should include one or more sensors for detecting the position of switching mechanism (i.e.

left or right) in order to verify whether or not it is actually in the correct position. The need for this

sensor resulted from a discussion with Gene Nishinaga of Transit Control Solutions, a veteran of the

automated transit industry and one of the developers of the controls system for Bay Area Rapid Transit

(BART). To summarize the discussion, having the switching mechanism in the wrong state is less

important than not knowing the switching mechanism is in the wrong state. Knowing that the switching

mechanism is in the wrong state allows for the ability to correct the state, whereas being in the wrong

state, and also not being able to verify the state, will result in the Superway rider ending up in the wrong

location, without notifying the network.

89

Object Detection
From the Fall 2013 semester, the Controls Team continued to use the same ultrasonic sensors that the

2012-2013 group used. In the Spring 2014 semester, the team was able integrate the sketch needed to

utilize the sensor into the Superway library.

Figure 65. Object Detection Subsystem. The ultrasonic sensor is used detect whether or not there is a path obstruction and the
distance to any path obstructions.

The object detection subsystem was unable to be utilized in time for Maker’s Faire. This was in part due

to the priority given to the navigation system since one of the main requirements is that the Pod will

always know where it is on the track. Due to the somewhat buggy nature of the navigation subsystem,

due to the inconsistent lighting, it was also decided to only have one Pod on the track and since it would

always be constrained to a track it would not need to make use of the object detection subsystem.

Maker Faire Model
When the team decided to scale down for the Maker Faire display model, the two most critical areas to

inspect were the number of microcontrollers used, and the method of providing the pod with power.

Due to the limited time frame of a single semester, the team was not confidant that four Arduinos

integrated with the SJOne board could be fully tested to the point that it would yield predictable and

reliable results. For this reason, all the functions performed by separate subsystems were consolidated

to a single Arduino Uno.

Knowing that the 1/12-scale track would have to be disassembled and transported to Maker Faire, the

team chose not to develop a connection to the power rails of the track as developed by the Electrical

Engineering team the previous semester. The two day setup time would not be a sufficient amount of

time to ensure that the connections between track segments would work through the entirety of the

weekend. Instead, the team opted to run solely on battery power.

Additionally, the motor control system developed for the DC motors was not implemented. This was

due to the fact that the team chose to operate the pod at a lower overall speed, as opposed to the 1/12-

scale speed of 2.5 miles per hour, to reduce the risk of damage to the pod or collisions with people

90

attempting to test the object detection. The algorithm governing route navigation was not utilized

either due to reasons relating to SPI integration with the SJOne board.

Power
After the announcement that Spartan Superway was going to Maker Faire, the team decided to abandon

plan to acquire power for the pod from the guideway and instead switched to using on-board power

source for portability and reliability issues. Since the chosen DC motors were rated at 6V, power would

come from four AA batteries connected in series that supply 6V DC. This setup was chosen to reduce the

number of components needed to power different devices with different voltages. However, since the

sensors being used on the pod can only operate on less than 5V, a voltage regulator was needed to

reduce the 6V output from the battery pack down to 5V using an L4940V5 1.5A Voltage Regulator. The

circuit for the regulator was constructed based on the schematic given in the provided datasheet that is

shown in Figure 66 where the 6V input is applied across the 0.1 μF capacitor and 5V is output across the

22μF capacitor. This 5V supply was then used to power the Arduino, along with the infrared reflective

sensors and the ultrasonic distance sensor. Realizing the limited space inside the cabin frame of the

model, the regulator circuit was put on an Arduino Proto Shield and the resulting circuit is similar to that

shown in Figure 67 where the shield would also be used as a compact physical platform to mount other

components. Furthermore, anticipating that the motors and solenoids would draw significant currents,

the team chose to have two separate but identical battery packs. One pack would be used to power the

microcontrollers (Arduino and SJOne boards) and sensors through the regulator while the second pack

would be used exclusively to power the DC motors and solenoids.

Figure 66. Circuit Diagram for L4940V5 Voltage Regulator (Source: STMircoelectronics)

91

Figure 67. Circuit of Voltage Regulator on Arduino Proto Shield Converting 6V from 4-AA Batteries to 5V

Sensors
The design of the Maker Faire model incorporates two types of sensor for two different subsystems,

navigation and distance control/object detection. The navigation subsystem utilizes two Optek

OPB704WZ infrared reflective object sensors pointing upward from the top of the cabin frame to the

underside of the guideway. Each sensor is rated at 2V and thus was connected to power from the

Arduino through a pair of 470Ω and 100kΩ resistors that are mounted on the Proto Shield. Signal output

by the sensors would be read by the Arduino through its analog pins.

The object detection subsystem uses an HC-SR04 ultrasonic distance sensor mounted in front of the

cabin frame. Since the sensor is rated at 5V, it was connected directly to the output voltage from the

Arduino while two outputs were connected to two of the Arduino's digital pins as shown in Figure 68.

92

Figure 68. Circuit of Voltage Regulator and Sensors on Arduino Proto Shield

Switching Solenoids
To activate the switching arms that are located on top of the bogie, two 5V solenoid were used. Each

solenoid is rated at 5V and 1.2W continuous and actuated through a TIP102 NPN Darlington 100V 8A

Transistor with transient-response-protection diodes. The solenoids would be powered by the second

battery pack. It is worth noticing that although the solenoids were rated at 5V, the team decided to run

them directly on 6V from the battery pack. The reason for such decision was that through testing, it was

observed that the switching arms were heavy enough to prevent the solenoid from fully extend when

supplied with 5V. The solenoids had to be fully extended because the switching arms were designed to

reach the top guiding midsection of the track only when the solenoids are fully pushed out.

93

Figure 69. Circuit of Voltage Regulator with Sensors and Switching Solenoids with Separate 4-AA Battery Packs

DC Motors
The DC motors from the Fall semester were deemed to be too weak while taking up too much space

inside the bogie and thus new motors were chosen. The new motors are 30:1 Micro Metal Gearmotor

from Pololu. Each motor is rated at 6V and 120mA free-run current with a no-load output shaft velocity

of 1000 rpm and 9 oz.in of stall torque. The motor has an extended back shaft that could be used to

monitor shaft velocity using an integrated optical quadrature encoder. The motors share the same 6V

input with the solenoids from the second battery pack. Driving the motors would be a Pololu DRV8833

Dual Motor Driver Carrier, which is represented in Figure 70 by an H-bridge placeholder. Similarly to the

previous setup, there would be two motors in each bogie driving the diagonally opposing wheels.

Heat dissipation from the actuators as well as the transistors and regulator was a concern during the

design process. However, the open design of the cabin frame would help effectively dissipate any

generated heat.

Besides the Arduino microcontroller that controls the electronics onboard, a second microcontroller, the

SJOne board was also incorporated into the system. The SJOne would provide wireless communication

between the pod and the computer. The board was connected to the Arduino through SPI and was

powered from the same 5V source from the voltage regulator.

94

Figure 70. Circuit of Complete Pod Electronics Connected to Arduino Proto Shield

Chassis
The 2012-2013 Controls team produced a 1/12-scale bogie and pod chassis that were fabricated using a

3D printer. At the beginning of the 2013-2014 academic year, access to a 3D printer was no longer

reliable due to the growing popularity of the emerging technology and TechShop’s promotion of the 3D

printing classes. Limited access to the required tools, and the overall printing time of approximately 54

hours, resulted in 3D printing being a prohibitive and inefficient method of fabricating the necessary

parts. The best alternative was to use the computer numerical controlled (CNC) laser-cutter located in

the Mechatronics Lab of the Engineering building to cut parts from 1/8” acrylic sheets leftover from the

1/12-scale track. New sheets could then be purchased from any of the TAP Plastics in Bay Area.

Rather than permanently glue each piece together with acrylic cement, the acrylic pieces were designed

to connect using M3 machine screws and nuts, following the technique commonly known as interlocking

T-bolt construction. The technique is detailed in an Instructables guide produced by Oomlout, a United

Kingdom based organization specializing in Arduino-based products and projects (Oomlout, 2014).

95

Figure 71. Interlocking T-bolt Construction. Using this technique on acrylic pieces allows temporary assembly and simple
disassembly. (Oomlout, 2014)

Figure 72. Joined Acrylic Components. Interlocking T-bolt construction provides a tight fight and prevents the nut from freely
spinning (Oomlout, 2014).

The acrylic chassis required several iterations with each iteration focused

around a particular weakness of the previous design, which generally

consisted of structural weaknesses based on the brittleness of acrylic or

unforeseen difficulties in assembling the chassis. Once completed, the

entire chassis could be cut from a single sheet of acrylic measuring

approximately 17” by 17” in just over an hour by efficiently orienting the

individual components of the chassis (see #include <SPI.h>

int buf [3];

volatile byte pos;

volatile boolean process_it;

int gasPedal = 0;

unsigned long timerStop;

96

void setup (void)

{

 pinMode(3, OUTPUT);

 digitalWrite(3, LOW);

 pinMode(2, OUTPUT);

 digitalWrite(2, LOW);

 Serial.begin (9600); // debugging

 // have to send on master in, *slave out*

 pinMode(MISO, OUTPUT);

 // turn on SPI in slave mode

 SPCR |= _BV(SPE);

 // get ready for an interrupt

 pos = 0; // buffer empty

 process_it = false;

 // now turn on interrupts

 SPI.attachInterrupt();

} // end of setup

// SPI interrupt routine

ISR (SPI_STC_vect)

{

byte c = SPDR; // grab byte from SPI Data Register

Serial.print("ISR\n");

 // add to buffer if room

 if (pos < sizeof buf)

 {

 buf [pos++] = c;

 // example: newline means time to process buffer

 if (c == 0x00)

 process_it = true;

 } // end of room available

} // end of interrupt routine SPI_STC_vect

// main loop - wait for flag set in interrupt routine

void loop (void)

{

 if (process_it)

 {

 gasPedal = buf[0];

 Serial.println(gasPedal);

 timerStop = millis();

 /*

 for(int i=0; i<(pos-1); i++)

 {

 Serial.print (buf[i]);

 Serial.print(" ");

97

 }

 */

 pos = 0;

 process_it = false;

 } // end of flag set

 if(gasPedal)

 {

 //Serial.println("Gas pedal is true!");

 analogWrite(3, 70);

 //digitalWrite(3, HIGH);

 }

 if(!gasPedal)

 {

 digitalWrite(3, LOW);

 }

// Serial.print("HI\n");

} // end of loop

98

Appendix V: 1/12-Scale Part Drawings). This also included spare pieces of particularly small

components, like screw spacers. The final design proved to be particularly durable throughout the

duration of Maker Faire, even surviving a direct broadside hit from a beach ball, after which it continued

with its route.

Figure 73. 1/12-scale CAD Assembly. The chassis is
constructed from approximately 15 unique parts.

Figure 74. 1/12-scale Chassis. Off-the-shelf components
were used whenever possible.

Programming
Once the coding process began at the start of the semester, the team chose to develop a versatile

Superway Library that would allow for the subsequently developed Arduino sketches to be simple and

easy to read. The core of this process was to create a “Pod” class such that within an Arduino sketch,

the programmer could create and manipulate a “Pod” object with commands specific to the subsystem,

such as Speed Control, Navigation, and Object Detection.

Developing the class for the Superway Library began with creating the header file, in which the

necessary private variables and functions with appropriate pseudocode were listed. The private

variables primarily represent characteristics of the pod, including speed, location, destination, and the

distance to a detected object. Some additional variables were implemented for state tracking and

timing purposes, such the current and previous readings of the reflective object sensors, and the time

since the last encoder signal was received. For each private variable included within the class, a

corresponding read function, and in some cases write function, were also necessary. Private variables

within a class are only able to be manipulated or accessed through their respective class, therefore

necessitating the read and write functions. Because the Superway Library was developed specifically

within the context of the Arduino-compatible platform, the development adhered closely to the Arduino

API Style Guide located on the Arduino website (Arduino, 2014).

99

Once the fundamental needs of the Pod class were outlined with respective pseudocode, further

development consisted of unit testing functions within the context of a simple Arduino sketch. For the

read and write functions, this was a relatively straightforward process. For more complicated functions,

such as the triggering of the reflective object sensors to indicate marker readings, the Arduino sketch

was used to develop the code, and upon successful completion, the code was transferred to the sketch.

In most cases, this was a generally successful practice; however, insufficiently testing the code following

the transfer led to significant problems later on in the coding process.

The Object Detection code governing the use of the ultrasonic sensor was begun in the early stages of

the coding process, prior to the confirmation of the Maker Faire exhibition. This code was developed

according to the ideal that for optimal performance and safety, all code within the Controls System must

be non-blocking (i.e. no use of the delay() function). Although the ultrasonic sensor code functioned as

required as a standalone Arduino sketch, once it was transferred to the Pod class as a function, it no

longer worked. Because the Object Detection subsystem was less important than other subsystems for

the sake of Maker Faire, primarily Navigation, the non-blocking code developed was substituted for the

NewPing Arduino Library developed by Tim Eckel (Eckel, 2014). Although the library uses blocking code

methods, the time delays were in the region of microseconds as opposed to milliseconds, so the team

decided it was acceptable for implementing at Maker Faire if the original code was not fully developed

and integrated in time for the event.

A similar problem arose in developing the Navigation subsystem, specifically in regards to simplifying the

process of reading the triggering events for the markers placed along the track. The initial use of state

tracking alone was sufficient for the test sketch, but like the ultrasonic sensor code, it did not transfer to

the Pod class. Once testing sessions began lasting into the evening, and the ambient light within the

testing environment began to decrease more rapidly, state tracking alone was no longer sufficient. A

short non-blocking timer was added to the code to prevent the pod from reading more than one marker

within the span of 0.25 seconds. This time interval was determined based on the speed that the pod

would run during the Maker Faire exhibition.

The Controls Team determined the operating speed of the pod based on two characteristics: the

minimum possible speed, and the response time of the switching mechanism solenoids. The minimum

speed of the pod was set as the lowest possible PWM signal to create instantaneous motion of the pod.

Once the pod started moving, its speed would naturally increase slightly as it overcame friction and

gained momentum. This speed of the pod was set slightly higher for increased momentum and

smoother travel across the track gaps at junctions. The speed ceiling was determined based on the

amount of time required for the switches to fully elevate after reading a track marker. After choosing

the ideal travel speed, the track markers were placed to ensure the pod would stop at defined stations

and that the switches would fully elevate before reaching the guiding rails. The final Arduino sketch

used in the Maker Faire exhibition, as well as the unfinished Pod class are detailed in

100

Appendix S: Arduino Maker Faire Sketch Maker Faire sketch and /*

Spartan Superway 1/12 Scale Model Maker Faire Demonstration Sketch

2013-2014 ENGR 195D / Spartan Superway

Created by: Cory Ostermann, Man Ho, Randall Morioka, Eriberto Velzquez, and

Anthony Vo

This sketch provides functionality for a user to send new destinations to a

pod via an SJOne microcontroller connected to a laptop.

*/

#include "SPI.h"

#include "NewPing.h"

// Starting Location Variables:

#define START_NODE 0

#define START_LINE 0

#define START_TICK 1

#define START_DESTINATION -1

// Pin definitions:

#define TRACK_OFFLINE A0 // The pin attached to the Offline reflective

object sensor

#define TRACK_ONLINE A1 // The pin attached to the Online reflective object

sensor

#define SWITCH_OFFLINE 4 // The pin attached to solenoid actuating the

Offline Switch

#define SWITCH_ONLINE 5 // The pin attached to solenoid actuating the

Online Switch

#define MOTOR_A1 3

#define MOTOR_A2 2

#define TRIG 6

#define ECHO 7

// Miscellaneous definitions:

#define ONLINE 1

#define OFFLINE 0

#define THRESHOLD_ONLINE 100 // The maximum amount of light reflected

from the markers to trigger the sensors

#define THRESHOLD_OFFLINE 100

#define BOUNCE_TIME 250 // The time delay to prevent multiple readings

#define NO_DESTINATION -1 // The value for when a pod does not have a

specified destination

#define MAX_RANGE 20 // Maximum detection range (cm) at which the pod

will begin to slow

#define MIN_RANGE 10 // Distance (cm) at which the pod will perform a

active braking

#define MAX_DUTY 65 // Maximum allowable motor duty cycle

#define MIN_DUTY 60 // Minimum duty cycle for motion

#define BRAKE 1 // State tracker for active braking

#define BRAKE_TIME 1000 // The timer that determines when the motors go

from active braking to coasting

#define STATION_1 0

#define STATION_2 2

#define STATION_3 6

101

// SPI Variables:

int buf [5];

volatile byte pos;

volatile boolean process_it;

// Navigation variables:

int readingOffline, readingOnline; // Stores the reflective object sensor

readings

int sensorOnlineNew, sensorOnlineStored, sensorOfflineNew,

sensorOfflineStored; // Sensor state tracking variables

unsigned long timerOnline, timerOffline; // Timers to prevent marker

bouncing

int destination;

int locationNode, locationTick, locationLine; // locationNode tracks the

section of track

 // locationTick tracks the

marker readings

 // locationLine tracks whether

the pod is Online or Offline

int locationNodePrevious;

// Object Detection Variables:

NewPing sonar(TRIG, ECHO, MAX_RANGE);

int range;

// Speed Control Variables:

int dutyCycle;

int activeBrake;

unsigned long timerBrake;

void setup()

{

 // Setup pin modes:

 pinMode(TRACK_ONLINE, INPUT);

 pinMode(TRACK_OFFLINE, INPUT);

 pinMode(SWITCH_ONLINE, OUTPUT);

 digitalWrite(SWITCH_ONLINE, LOW);

 pinMode(SWITCH_OFFLINE, OUTPUT);

 digitalWrite(SWITCH_OFFLINE, LOW);

 // Initialize the Serial Monitor

 Serial.begin(9600);

 // Initialize variables:

 locationNode = START_NODE;

 locationTick = START_TICK;

 locationLine = START_LINE;

 destination = destinationWrite(START_DESTINATION);

 range = 0; // No objects detected

 activeBrake = 0; // Turn off the brake

 // SPI related initialization:

 pinMode(MISO, OUTPUT);

 // turn on SPI in slave mode

 SPCR |= _BV(SPE);

 // get ready for an interrupt

 pos = 0; // buffer empty

 process_it = false;

 // now turn on interrupts

 SPI.attachInterrupt();

102

 printSnapshot();

 // **

 //delay(5000);

 // **

} // end setup

void loop()

{

 /*

 SPI COMMUNICATION

 */

 if (process_it)

 {

 if(-1 == destination)

 {

 switch(buf[0])

 {

 case 1:

 destination = destinationWrite(buf[1]);

 locationNode = destinationWrite(buf[2]);

 locationTick = 1;

 locationLine = 0;

 break;

 case 2:

 destination = destinationWrite(buf[1]);

 break;

 case 111:

 locationNode = buf[1];

 locationTick = buf[2];

 locationLine = buf[3];

 break;

 default:

 break;

 } // end buf[0] switch

 printSnapshot();

 //pos = 0;

 }

 /*

 for(int i=0; i<(pos-1); i++)

 {

 Serial.print (buf[i]);

 Serial.print(" ");

 }

 */

 pos = 0;

 process_it = false;

 } // end of flag set

 /*

 NAVIGATION

 */

 // Take new sensor readings:

 readingOffline = analogRead(TRACK_OFFLINE);

 readingOnline = analogRead(TRACK_ONLINE);

 // Determine the new sensor states (1 = on marker, 0 = off marker)

 if(readingOnline < THRESHOLD_ONLINE)

103

 {

 sensorOnlineNew = 1;

 } else {

 sensorOnlineNew = 0;

 }

 if(readingOffline < THRESHOLD_OFFLINE)

 {

 sensorOfflineNew = 1;

 } else {

 sensorOfflineNew = 0;

 }

 // Compare and possibly reset the Stored values based off of the New

values.

 // Offline Update:

 if(sensorOfflineStored < sensorOfflineNew) // The leading edge condition

 {

 sensorOfflineStored = sensorOfflineNew;

 }

 else if(sensorOfflineStored > sensorOfflineNew) // The trailing edge

condition

 {

 sensorOfflineStored = sensorOfflineNew;

 if(millis() - timerOffline > BOUNCE_TIME) // This if state prevents

multiple readings

 {

 Serial.println("Offline: Trailing Edge");

 Serial.println("----------------------");

 // Increment the tick counter:

 switch(locationTick)

 {

 case 2:

 locationTick = 0;

 locationLine = 1;

 break;

 default:

 locationTick++;

 break;

 } // end locationTick update

 timerOffline = millis();

 // Manipulate the Switch:

 switch(locationTick)

 {

 case 1:

 switchWrite(2); // Turn the switch off

 if(OFFLINE == locationLine && locationNode == destination)

 {

 destination = -1; // Arrived at specified destination

 }

 break;

 case 2:

 if(ONLINE == locationLine) // The pod is exiting an Online

section of a junction

 {

 switchWrite(ONLINE); // Turn on the online switch

 }

 else if(OFFLINE == locationLine)

 {

104

 switchWrite(OFFLINE);

 }

 break;

 default:

 break;

 } // end locationTick switch

 printSnapshot();

 } // end bounce

 }

 // Online Update:

 if(sensorOnlineStored < sensorOnlineNew) // The leading edge condition

 {

 sensorOnlineStored = sensorOnlineNew;

 }

 else if(sensorOnlineStored > sensorOnlineNew) // The trailing edge

condition

 {

 sensorOnlineStored = sensorOnlineNew;

 if(millis() - timerOnline > BOUNCE_TIME) // This if statement prevents

multiple reads

 {

 Serial.println("Online: Trailing Edge");

 Serial.println("---------------------");

 // Increment the node counter:

 locationNodePrevious = locationNode;

 switch(locationNode)

 {

 case 4:

 if(STATION_3 != destination)

 {

 locationNode = 10;

 }

 else

 {

 locationNode++;

 }

 break;

 case 9:

 locationNode = 0;

 break;

 case 10:

 locationNode = 8;

 break;

 default:

 locationNode++;

 break;

 } // end locationNode update switch

 // Manipulate the switch:

 switch(locationNode)

 {

 case STATION_1: // approaching Station 1

 case STATION_2: // approaching Station 2

 case STATION_3: // approaching Station 3

 if(locationNode == destination) // At the destination node

 {

 locationLine = 0; // Taking the Offline route

 switchWrite(OFFLINE);

105

 } else { // Not the destination node

 locationLine = 1; // Stays on the Online

section

 switchWrite(ONLINE);

 }

 break;

 case 4: // Approaching the bypass junction

 if(STATION_3 != destination) // If Station 3 (node 5) is not the

destination...

 { // Use the Mainline switch

 switchWrite(ONLINE); // Turn on the Online switch

 }

 else // Use the Offline switch

 {

 switchWrite(OFFLINE); // Turn on the Offline switch first

 }

 break;

 case 8:

 if(10 == locationNodePrevious)

 {

 switchWrite(ONLINE);

 }

 else

 {

 switchWrite(OFFLINE);

 }

 break;

 default: // This case will appear everytime the pod is exiting a

junction

 switchWrite(2); // Turn off the switch

 locationTick = 0; // Reset the tick counter

 locationLine = 1;

 break;

 } // end locationNode switch

 printSnapshot();

 timerOffline = millis();

 }

 }

 // end Navigation

 /*

 OBJECT DETECTION

 */

 // end Object Detection

 /*

 SPEED CONTROL

 */

 // Update the motor duty cycle based on location and detected object range:

 if((0 < range) && (MIN_RANGE >= range)) // If the pod detects an object

within the critical range

 {

 digitalWrite(MOTOR_A1, HIGH); // Perform active braking (HIGH-HIGH)

 digitalWrite(MOTOR_A2, HIGH);

 dutyCycle = 0; // Set the duty cycle to 0

 }

 else if((MIN_RANGE < range) && (MAX_RANGE >= range))

 {

106

 dutyCycle = map(range, MIN_RANGE, MAX_RANGE, MIN_DUTY, MAX_DUTY); //

Adjust the speed based on the distance

 }

 else if(NO_DESTINATION == destination)

 {

 digitalWrite(MOTOR_A1, HIGH); // Perform active braking (HIGH-HIGH)

 digitalWrite(MOTOR_A2, HIGH);

 dutyCycle = 0; // Set the duty cycle to 0

 }

 else

 {

 dutyCycle = MAX_DUTY;

 }

 if(MAX_DUTY < dutyCycle) // Safety precaution in case the duty cycle

somehow becomes higher than the maximum duty cycle

 {

 dutyCycle = MAX_DUTY;

 }

 // Run the motors at the adjusted duty cycle:

 analogWrite(MOTOR_A1, dutyCycle);

 digitalWrite(MOTOR_A2, LOW);

 // end Speed Control

} // end loop

void printSnapshot()

{

 Serial.print("Destination: ");

 Serial.println(destination);

 Serial.print("Location: ");

 Serial.print(locationNode);

 Serial.print(" (from ");

 Serial.print(locationNodePrevious);

 Serial.println(")");

 Serial.print("Tick: ");

 Serial.println(locationTick);

 Serial.print("Line: ");

 Serial.println(locationLine);

 Serial.print("Switch: ");

 if(digitalRead(SWITCH_ONLINE) == HIGH && digitalRead(SWITCH_OFFLINE) ==

LOW)

 {

 Serial.println("Online");

 }

 else if(digitalRead(SWITCH_OFFLINE) == HIGH && digitalRead(SWITCH_ONLINE)

== LOW)

 {

 Serial.println("Offline");

 }

 else if(digitalRead(SWITCH_OFFLINE) == LOW && digitalRead(SWITCH_ONLINE)

== LOW)

 {

 Serial.println("Off");

 }

 else {

 Serial.println("Error");

107

 }

 Serial.print("Range: ");

 Serial.println(range);

 Serial.print("Duty Cycle: ");

 Serial.println(dutyCycle);

 Serial.println("-----------------------------------");

}

int destinationWrite(int station_num) // Converts a station number to the

corresponding location node

{

 int node;

 switch(station_num)

 {

 case 1: // Station 1

 node = STATION_1;

 break;

 case 2:

 node = STATION_2; // Station 2

 break;

 case 3: // Station 3

 node = STATION_3;

 break;

 default:

 node = -1;

 break;

 } // end station_num switch

 return node;

} // end destinationWrite;

void switchWrite(int line)

{

 switch(line)

 {

 case ONLINE:

 digitalWrite(SWITCH_OFFLINE, LOW);

 digitalWrite(SWITCH_ONLINE, HIGH);

 break;

 case OFFLINE:

 digitalWrite(SWITCH_ONLINE, LOW);

 digitalWrite(SWITCH_OFFLINE, HIGH);

 break;

 default:

 digitalWrite(SWITCH_ONLINE, LOW);

 digitalWrite(SWITCH_OFFLINE, LOW);

 break;

 } // end line switch

} // end swtichWrite

// SPI interrupt routine

ISR (SPI_STC_vect)

{

byte c = SPDR; // grab byte from SPI Data Register

Serial.print("ISR\n");

 // add to buffer if room

 if (pos < sizeof buf)

 {

108

 buf [pos++] = c;

 // example: newline means time to process buffer

 if (c == 0x00)

 process_it = true;

 } // end of room available

} // end of interrupt routine SPI_STC_vect

109

Appendix T: Arduino Pod class, respectively.

Network Integration
One of the key goals for the 2013-2014 Controls Team was to integrate the network architecture to the

point that the 1/12-scale pods could be controlled wirelessly from a user interface run on a laptop, a

feature that not fully realized in the previous generations team. Reaching this goal required integrating

the Arduino with a separate microcontroller capable of wireless communication. The communication

protocol chosen for the interface was SPI, based on the protocol being fully supported by Arduino UNO.

Originally, the BeagleBone Black was planned for the wireless access, but it has since been substituted

for the SJOne microcontroller running FreeRTOS. The SJOne board mounted on the pod communicates

to the laptop through a second SJOne board connected to the laptop via USB.

Once wireless communication was established from the laptop to the Arduino through the two SJOne

boards, the primary goal was two allow a person manning the laptop to be able to send a new

destination to the pod once the current destination was complete. Two secondary goals were to further

enhance the code to allow the laptop user to reset the pod’s starting location as a different station

(instead of the default), and also to reset the pods location on the track even if it was not currently

stopped at a station. These two secondary goals were to allow the user to reset the pods location

without having to first manually move the pod back to the default starting station.

The code to send and receive data on both of the SJOne boards, as well as the segment of code to

process the data on the Arduino were all developed by Eriberto Velzquez, one of the Computer

Engineering students on the Controls Team. Once the Arduino receives new data from the SJOne board,

it waits until it no longer has a specified destination to process it. One of the most important things to

keep in mind during the coding process was that once Arduino data interrupt is triggered by the SJOne,

very few actions can be taken while the interrupt is active without potentially causing unpredictable

results. For this reason, the data is only stored while the interrupt is active, and only after the interrupt

has ended does the Arduino actually process the data.

The data exists as an array of integers, with the first being the type of command it is receiving, or mode.
The mode determines whether the pod is simply receiving a new destination, a new destination along
with a different starting station, or a new destination with a starting location not at a station. The
particular code required to process the data buffer on the Arduino is detailed in /*
 Pod.h - Library for controlling Spartan Superway 1/12 scale pods
 Created by Cory Ostermann (Lead), Man Ho, Randall Morioka, and Anthony Vo
 Spartan Superway 2013-2014 Controls Team
*/

#ifndef Pod_h
#define Pod_h

#include "Arduino.h"

class Pod
{
 public:
 Pod(int identifier);
 //void initialize(); // Sets up intial pod state, including Depot
location and SPI settings
 void statusWrite(int status_num);

110

 int statusRead();
 int destinationRead(); // Returns the pods current destination
 void destinationWrite(int station_id); // Sets the pods next destination
 int locationRead(); // Returns the pods current location
 void locationUpdate(); // Increments the pod's location as it reads tick marks
 //boolean ReflectiveSensor(int sensor, int edge);
 void switchWrite(int line); // Manipulates the switching mechanism
 int DetectObject(); // Senses if an object is obstructing the path
(Ultrasonic)
 int speedReadPWM(); // Returns the speed of the pod as a PWM duty
cycle
 void speedWritePWM(int duty_cycle); // Sets the speed of the of the pod using
a duty cycle
 void Cruise();
 private:
 /*
 Pod Characteristics
 */
 int _podID; // An identifying number that the Network can use to
coordinate pods
 int _podStatus; // Pod status: ready for instruction or not ready
 int _dutyCycle; // The PWM duty cycle being applied to the motors
 int _locationNode; // The most recent node passed by the pod
 int _locationLine; // Mainline or Offline
 int _locationAlt; // For deactivating the switch and slowing the pod
 int _destination; // The next station the pod will stop at
 int _range; // The range to the detected object (0 if no object
detected)
 int _stateTrack1New; // Tracks the state of the location Node sensor
(true means HIGH)
 int _stateTrack1Prev; // The previous state of the sensor
 int _stateTrack2New; // Tracks the state of the location Alt sensor
(true means HIGH)
 int _stateTrack2Prev; // The previous state of the sensor

 /*
 State Trackers:
 State trackers will be boolean variables to determine if systems are currently
active
 (i.e. a track switch is on/true or off/false)
 */
 boolean _stateSwitchMainline; // Tracks if the Mainline switch solenoid
is active (true)
 boolean _stateSwitchOffline; // Tracks if the Offline switch solenoid
is active (true)
 /*
 Time Trackers:
 Time trackers are unsigned long variables used in conjunction with the millis()
command
 in order to produce non-blocking code

 NOTE: Unless agreed upon by all team members, delay() should never be used.
 */

};

#endif

111

/*
 Pod.cpp - Library for controlling Spartan Superway 1/12 scale Maker Faire exhibition
pods
 Created by Cory Ostermann (Controls Team Lead), Man Ho, Randall Morioka, Eriberto
Velazquez, and Anthony Vo
 Spartan Superway 2013-2014 Controls Team
*/

// Arduino Pins
#define MOTOR_A1 3 // The M1 pin for the motor driver
#define MOTOR_A2 2
//#define MOTOR_B1 5 // The M2 pin for the motor driver
//#define MOTOR_B2 4
#define SOLENOID_MAINLINE 4 // The pin to manipulate the transistor attached to the
Mainline switch solenoid (left)
#define SOLENOID_OFFLINE 5 // The pin to manipulate the transistor attached to the
Offline switch solenoid (right)
//#define M2_ENCODERA
//#define M2_ENCODERB
#define TRIG 6
#define ECHO 7
#define TRACK_SENSOR1 A1
#define TRACK_SENSOR2 A0
#define SPI_INTERRUPT 9

// Additonal Properties
#define WHEEL_DIAMETER 1.875 // The diameter of the bogie wheels in inches
#define MAX_DUTY 75 // The maximum allowable duty cycle (normal
cruise speed)
#define MIN_DUTY 60 // The minimum duty cycle the pod will travel at
before stopping completely
#define HALF_DUTY 60 // The duty cycle for entering or leaving a
station
#define MAX_DISTANCE 50 // The limit when the pod will reduce speed to account
for detected objects (TBD)
#define MIN_DISTANCE 25 // The limit when the pod will apply the Emergency
Brake (i.e. stop the motors) (TBD)
#define MAINLINE 1
#define OFFLINE 0
#define READY 1
#define NOT_READY 0
#define THRESHOLD 30 // Threshold for the reflective sensors
#define LEADING_EDGE 1 // Leading Edge of the track marker
#define TRAILING_EDGE 0 // Trailing Edge of the track marker

#include "Arduino.h"
#include "Pod.h"
//#include "SPI.h"
//#include "SD.h" // The Adadfruit library for using an SD card for data-
logging
//#include "RTClib.h" // The Adafruit library for using a real-time clock to
timestamp data in data-logging
#include "NewPing.h"

Pod::Pod(int identifier)
{
 _podID = identifier; // Give the pod it's identifier
 _podStatus = READY; // Set the pod's initial state

112

 _locationNode = 0; // Set the initial location at the Depot
 _locationLine = OFFLINE;
 _locationAlt = 2;
 _range = 0;
 _stateTrack1Prev = LOW;
 _stateTrack2Prev = LOW;

 /*
 Setup the pins for actuators and sensors
 */
 // Motors
 pinMode(MOTOR_A1, OUTPUT);
 digitalWrite(MOTOR_A1, LOW);
 pinMode(MOTOR_A2, OUTPUT);
 digitalWrite(MOTOR_A2, LOW);
 //pinMode(MOTOR_B1, OUTPUT);
 //digitalWrite(MOTOR_B1, LOW);
 //pinMode(MOTOR_B2, OUTPUT);
 //digitalWrite(MOTOR_B2, LOW);
 // Solenoids
 pinMode(SOLENOID_MAINLINE, OUTPUT);
 digitalWrite(SOLENOID_MAINLINE, LOW);
 pinMode(SOLENOID_OFFLINE, OUTPUT);
 digitalWrite(SOLENOID_OFFLINE, LOW);
 // Motor Encoders
 //pinMode(M1_ENCODERA, INPUT);
 //pinMode(M1_ENCODERB, INPUT);
 //pinMode(M2_ENCODERA, INPUT);
 //pinMode(M2_ENCODERB, INPUT);
 // Ultrasonic Sensor
 pinMode(TRIG, OUTPUT);
 pinMode(ECHO, INPUT);
 // Track Sensor(s)
 pinMode(TRACK_SENSOR1, INPUT);
 pinMode(TRACK_SENSOR2, INPUT);

}

void Pod::statusWrite(int status_num)
{
 _podStatus = status_num;
}

int Pod::statusRead()
{
 return _podStatus;
}

int Pod::destinationRead() // Returns the pods current destination (node)
{
 return _destination;
}

void Pod::destinationWrite(int station_id) // Sets the pods next destination (node)
{
 switch (station_id)
 {
 case 1:

113

 _destination = 0;
 break;
 case 2:
 _destination = 2;
 break;
 case 3:
 _destination = 5;
 break;
 default:
 break;
 }
}

int Pod::locationRead() // Returns the pods current location
{
 return _locationNode;
}

void Pod::locationUpdate() // Increments the pod's location as it reads tick marks
{
 // Get readings from the Track Sensors
 int readingSensor1 = analogRead(TRACK_SENSOR1);
 int readingSensor2 = analogRead(TRACK_SENSOR2);
 // Update the previous sensor states
 _stateTrack1Prev = _stateTrack1New;
 _stateTrack2Prev = _stateTrack2New;
 // Update the new sensor states based on the sensor readings
 if(readingSensor1 > THRESHOLD)
 {
 _stateTrack1New = HIGH;
 } else {
 _stateTrack1New = LOW;
 }
 if(readingSensor2 > THRESHOLD)
 {
 _stateTrack2New = HIGH;
 } else {
 _stateTrack2New = LOW;
 }

 if((_stateTrack1New == LOW) && (_stateTrack1Prev == HIGH)) // The Primary Track
Sensor is triggered
 {
 // Increment the location Node to the next section
 if(_locationNode == 7)
 {
 _locationNode = 0;
 }
 else
 {
 _locationNode++;
 }
 // And the pod is about to enter junction
 if(_locationNode == (_destination)) // If the next sector is
the destination node
 {
 switchWrite(OFFLINE); // Switch to
the Offline segment

114

 _locationLine = OFFLINE; // Set location to
Offline
 }
 else if(_locationNode != (_destination)) // If the next sector is
not the destination
 {
 switchWrite(MAINLINE); // Activate
the switch for the Mainline
 _locationLine = MAINLINE;
 }
 else if(_locationLine == OFFLINE) // If the pod is entering the
Mainline from Offline
 {
 _locationLine = MAINLINE; // Set the line to Mainline
 switchWrite(2); // Turn off the switch
solenoids
 }
 else if(_locationLine == MAINLINE) // If the pod is exiting the Mainline
section of a section with a station
 {
 switch (_locationNode)
 {
 case 0:
 case 2:
 case 5:
 switchWrite(2); // Turn off the solenoid
 break;
 default:
 break;
 } // end switch
 } // end if
 } // end Primary sensor check
 if((_stateTrack2New == LOW) && (_stateTrack2Prev == HIGH)) // The Secondary
Track Sensor is triggered
 {
 if(_locationLine == MAINLINE) // If on the Mainline
 {
 switchWrite(MAINLINE); // Toggle the switching
mechanism
 }
 if(_locationLine == OFFLINE) // If Offline...
 {
 switch (_locationAlt)
 {
 case 0:
 switchWrite(OFFLINE); // Toggle the
switching mechanism
 _locationAlt = 1;
 break;
 case 1:
 if(_locationNode == _destination)
 {
 _locationAlt = 2;
 break;
 } else {
 switchWrite(OFFLINE); // Toggle the
switching mechanism
 _locationAlt = 0;

115

 break;
 }
 case 2:
 _podStatus = NOT_READY;
 break;
 } // end switch
 } // end OFFLINE if
 } // end Secondary Sensor check
} // end locationUpdate
/*
boolean Pod::ReflectiveSensor(int sensor, int edge) // COULD NOT GET TO WORK
{
 static int reading, newVal, prevVal; // Stores Reflective Object
Sensor reading
 //boolean result; // Stores the result to be returned
 // Get relevant sensor data
 switch(sensor)
 {
 case 1: // Primary track sensor
 reading = analogRead(TRACK_SENSOR1);
 prevVal = _stateTrack1Prev;
 break;
 case 2: // Secondary track sensor
 reading = analogRead(TRACK_SENSOR2);
 prevVal = _stateTrack1Prev;
 break;
 default:
 break;
 } // end sensor switch
 if (reading > THRESHOLD) // The Reflective Object Sensor reads the felt markers
 {
 newVal = LOW;
 } else {
 newVal = HIGH;
 }
 // Update the new state variables:
 switch(sensor)
 {
 case 1:
 _stateTrack1New = newVal;
 break;
 case 2:
 _stateTrack2New = newVal;
 break;
 default:
 break;
 } // end sensor switch
 if(newVal == LOW && prevVal == HIGH) // Triggering on the leading edge
 {
 prevVal = LOW;
 switch(sensor)
 {
 case 1:
 _stateTrack1Prev = prevVal;
 break;
 case 2:
 _stateTrack2Prev = prevVal;
 break;

116

 default:
 break;
 } // end sensor switch
 if(edge == LEADING_EDGE) // The leading edge was specified
 {
 return true;
 } else {
 return false;
 }
 }
 else if (newVal == HIGH && prevVal == LOW) // Triggering on the trailing edge
 {
 prevVal = HIGH;
 switch(sensor)
 {
 case 1:
 _stateTrack1Prev = prevVal;
 break;
 case 2:
 _stateTrack2Prev = prevVal;
 break;
 default:
 break;
 } // end sensor switch
 if(edge = TRAILING_EDGE) // The trailing edge was specified
 {
 result = true;
 } else {
 result = false;
 }
 }
 else
 {
 result = false;
 }
 return result;

} // end ReflectiveSensor
*/

void Pod::switchWrite(int line)
{
 if(line == MAINLINE && SOLENOID_MAINLINE == LOW)
 {
 digitalWrite(SOLENOID_OFFLINE, LOW);
 _stateSwitchOffline = false;
 digitalWrite(SOLENOID_MAINLINE, HIGH);
 _stateSwitchMainline = true;
 }
 else if(line == MAINLINE && SOLENOID_MAINLINE == HIGH)
 {
 switchWrite(2); // Turn off both solenoid
 }
 else if(line == OFFLINE)
 {
 digitalWrite(SOLENOID_MAINLINE, LOW);
 _stateSwitchMainline = false;
 digitalWrite(SOLENOID_OFFLINE, HIGH);

117

 _stateSwitchOffline = true;
 }
 else if(line == OFFLINE && SOLENOID_OFFLINE == HIGH)
 {
 switchWrite(2); // Turn off both solenoid
 }
 else
 {
 digitalWrite(SOLENOID_OFFLINE, LOW);
 _stateSwitchOffline = false;
 digitalWrite(SOLENOID_MAINLINE, LOW);
 _stateSwitchMainline = false;
 }
}

int Pod::DetectObject() // Use the Ultrasonic Sensor make sure there are no
obstructions
{
 NewPing sonar(TRIG, ECHO, MAX_DISTANCE);
 _range = sonar.ping_cm();
 return _range; // If no objects are detected, return 0;
}

int Pod::speedReadPWM()
{
 return _dutyCycle;
}

void Pod::speedWritePWM(int duty_cycle)
{
 _dutyCycle = duty_cycle;
}

void Pod::Cruise()
{
 if ((_range != 0) && (_range < MIN_DISTANCE)) // if the pod is within critical
range
 {
 // Activate the "emergency brakes" (i.e. stop motors)
 digitalWrite(MOTOR_A1, HIGH);
 digitalWrite(MOTOR_A2, HIGH);
 //digitalWrite(MOTOR_B1, HIGH);
 //digitalWrite(MOTOR_B2, HIGH);
 _dutyCycle = 0; // set the duty cycle to
zero
 }
 else if ((_locationAlt == 2) && (_podStatus != READY)) // if the pod
arriving/sitting at a station
 {
 // Stop the motors
 digitalWrite(MOTOR_A1, HIGH);
 digitalWrite(MOTOR_A2, HIGH);
 //digitalWrite(MOTOR_B1, HIGH);
 //digitalWrite(MOTOR_B2, HIGH);
 _dutyCycle = 0; // set the duty cycle to
zero
 }

118

 else if ((_range >= MIN_DISTANCE) && (_range <= MAX_DISTANCE)) // If the pod
detects an object
 {
 _dutyCycle = map(_range, MIN_DISTANCE, MAX_DISTANCE, MIN_DUTY, MAX_DUTY);
 // Reduce speed based on the distance to the object
 }
 else if (_locationAlt == 1) // If the pod is entering the Offline segment of
track
 {
 _dutyCycle = HALF_DUTY; // Reduce duty cycle by half
 }
 else if ((_range == 0) && (_locationAlt == 0)) // If the pod is leaving the
Offline segment
 {
 _dutyCycle = MAX_DUTY; // Increase duty cycle to merge onto the
Mainline
 }
 // Manipulate the motors according to the current duty cycle
 analogWrite(MOTOR_A1, _dutyCycle);
 //analogWrite(MOTOR_B2, _dutyCycle);
 digitalWrite(MOTOR_A2, LOW);
 //digitalWrite(MOTOR_B1, LOW);

}

119

Appendix U: Arduino SPI Sketch.

Maker Faire Shortcomings

Navigation

Despite careful preparations, the 1/12-scale model still experienced difficulties in sensing its location

along the track under direct sunlight. It was decided earlier in the semester that infrared reflective

object sensors would be used to help the pod detect its location along the track. Through extensive

testing in different lighting scenarios inside the design space, the team observed great fluctuations in

readings from the sensors under different ambient lightings due to changing infrared compositions. As a

precaution, the bottom section of the entire track was lined with reflective metal foil to help increase

the consistency of the sensor readings. During our testing indoor, it was benchmarked that reading

values from ambient light (reflected from metal foils and ambient light) would be around 1000 and

values read from the felt markers would be in the 200-400 range, leaving a significant delta between

detection and non-detection for better accuracy and prevent bouncing.

However, the conditions at Maker Faire proved to be of a different magnitude as that inside the design

space. The clear-sky condition during both days of Maker Faire meant ambient light was flushed with

infrared spectrum. The fact that the scale model was position in open space, away from any shade

means that the entire model (all sides and angles) was flushed with a very large amount of infrared

coming from the sun. Having the sensors pointing upwards did not help the matter, even though they

were positioned near the bottom surface of the guideway which theoretically should have provided

some sort of shade. This resulted in ambient condition (non-detection) being registered around 1000

while the markers (detection) being read in the upper 900 range. The significantly smaller difference

between the two threshold values meant that the pod frequently misread the markers as it traveled

along the track, resulting in early or/and late actuations of the switching mechanisms, which ultimately

led to failures in navigating the track and reaching the intended destination. This caused problems in

demonstrating the validity of the system to spectators with the negative effects being most pronounced

during the hours between early morning and late afternoon. When the intensity of sunlight started to

decrease around 5 pm, the readings became more accurate and the pod was able to navigate the track

better, resulting in more flawless and consistent runs.

To help alleviate the problems cause by the sun, the team raised the reflective sensor closer to the

marker to the point of almost touching. This helped lower the value read on the marker but came with

its own disadvantages. Due to the pod's dynamics around the track and relatively high wind gusts

throughout the day at the Faire location, the lower portion of the pod experienced wiggling frequently.

With the sensor mounted very close to the marker, the frequent wobbling led to the risk of collision

between the sensors and the markers which could damage the sensors or knocked the markers off the

guideway. Evidently, the choice of infrared reflective sensors, while providing a simple sensing method,

did not prove to be robust enough to be used under different light environments.

Power Management

The current electronic components being used on the model consumed more power than intended and

caused power management problems at Maker Faire. Prior to the Faire, the team designed the scale

model to run on two packs of 4-AA batteries with one pack powering the microcontrollers together with

the sensors and the other powering the actuators (switching solenoids, DC motors). The solenoids were

rated to draw about 250mA of current each and the DC motors at 120mA with no load. Assuming that

120

the model would be running throughout the day for both days, the team anticipated high energy

consumption by the system and prepared 40 single-use alkaline batteries for the Faire but ended up

using more than the number prepared.

Power consumption by the pod increased as problem with sensor readings was alleviated. During the

first half of the first day, due to problems caused by the reflective sensors, very few complete runs were

carried out by the pod and thus power consumption was low. However, as the problems were

troubleshot and the pod making more successful runs in the latter half of the day, the batteries were

drained faster. With the pod making a successful loop of the track every 2-3 minutes, it was estimated

that a set of four batteries for the actuators was depleted after an average of 30-45 minutes. The culprit

of this problem was determined to be the switching solenoids. After a new set of batteries was changed

in, the solenoids were switched on completely and consistently. However, after several runs, while the

motors could still run, the solenoid did not fully push out when actuated and resulted in the bogie

getting stuck at track junctions or failed to switch to the intended section of the track. At the end of the

first day, the initially prepared battery set was completely used up and the team had to acquire more

batteries for the second day.

Although new type of battery was used for the second Faire day, problem with power consumption

persisted and rendered more failed runs. With the hope that rechargeable NiMH batteries would

provide more charge and current, the team acquired at least 12 batteries of such type together with a

quick charger. Unfortunately, the problem persisted with the new batteries and became worse.

Initially, from being fully charged through the night before, the batteries were drained at about the

same rate as the single-use type. After being charged by the quick charger with the charger, as

indicated by the charger's indicator, the batteries held up for even shorter amount of time with some of

them not able to power the pod fresh out of the charger. As a result, the team had to spend more than

an hour troubleshooting the problem with the pod sitting still and not being able to demonstrate it to

many interested spectators. The team then resorted to switching back to single-use alkaline batteries

which proved to be more reliable as well as being able to power the pod through the rest of the day.

Besides problems with the sensor reading, power consumption was the second biggest drawback of the

current design that, unfortunately, prevented the team from demonstrating the system to a significant

number of interested spectators. Given the large number of Faire goers being attracted to the scale

model, each failure to run the pod was a significant missed opportunity to demonstrate our project to

the public. Such missed opportunities should have been minimized to help create a positive impression

of Spartan Superway and ATN as a whole for as many spectators as possible. Fortunately, the very

dedicated team lead and several other team members were able to enthusiastically explain the concept

of the project to spectators while the pod was disabled, thus lessening the negative impacts caused by

the lack of actual demonstration.

1/12-Scale Track

Besides the two major problems caused by power consumption and sensor readings, the current track

model have several disadvantages that were pronounced during the preparation for the Faire as well as

during and after the Faire. First of all, the configuration of the track was quite fragile and caused

difficulties during disassembling and assembling of the track. The acrylic sections of the track, while

aesthetically pleasing and allow spectators to see the bogie inside, are fragile and require great care

while handling. In fact, at least on piece was broken while the track was disassembled to be move to the

121

Faire location. The bottom surfaces of another section of the track, where the bogie drive wheels get

traction, were flexed out of balance and impeded the pod's movement at the first turn after the home

station. This problem was exacerbated by the track being not level. For reasons that included the

ground surface at the Faire, the entire track could not be leveled even though each individual section

was leveled when they were mounted on the supporting posts. The track was also inflexible in the

sense that several of theoretically universal pieces could not be used interchangeably. For example, the

metal brackets that were used to connect track sections together could not provide seamless

connections. Some brackets worked well for some connections but could not fit in other connections;

some brackets allowed for flushed connections between the sections while others left relatively large

gaps that impeded movement of the pod. Furthermore, the wires connecting the actuators on the

bogie to the microcontroller in the cabin as well as the protective electrical tape around them were

scraped off due to friction caused by the small gap in the guideway bottom surface. In addition,

transporting the track was not an easy task as at least three types of vehicles were needed: a heavy duty

pickup truck to carry the steel sections, a compact pickup truck for all the posts, and two cars to

transport the acrylic sections.

Secondly, the track posed several safety issues to spectators, especially small children. The cylindrical

supporting posts of the track have openings with sharp edges that posed serious safety hazards.

Fortunately, a member of the team, Eddie Velasquez, realized the problem early and proposed the

ingenious idea of taping the openings to prevent cutting when people come in contact with them. The

solution proved to be very effective as there was at least one occasion where a young spectator, while

chasing the moving pod, bumped into one of the post openings and was startled by the impact but

fortunately was not cut or seriously hurt.

Next, the height of the track caused some trouble during troubleshooting, entering, and exiting the

exhibition area, as well as the potential damage due to people leaning on it. With the height of the track

being relatively low and the pod hanging underneath it, troubleshooting problems on the pod and

inspecting the track proved to be somewhat difficult as team members had to crouch down then turn to

face upward for extended periods of time. The exhibition station being inside the track loop and track's

low height also means that team members had to crouch down quite low to enter or exit the exhibition

area. Another problem with the track that was only obvious at Maker Faire is that the height of the

track seemed to be positioned perfectly for young spectators. As the guideway was at the eye level of

many child spectators, it was often seen that they would push or pull the pod along the guideway

forcefully or poking the electronics inside the cabin frame which might cause damages to the model. In

other instances, people were caught leaning on the track, which was very dangerous, especially with the

acrylic sections.

Overall, the current track design, while operational, contains several disadvantages. The inflexible and

fragile design means that the team risked damaging the track every time it needed to be taken apart and

reassembled after which its condition seemed to deteriorate. Some components of the track posed

serious safety issues but were properly fixed. Finally, the height of the track caused some practicality

problems when operating on the model.

Maker Faire Successes
Despite the shortcomings as previously mentioned, the Controls Team believes that the scale model as

well as the other exhibits at Maker Faire proved effective at garnering attention from the spectators.

122

For the Controls Team’s exhibit specifically, when the pod was functional, it was able to navigate itself

around the track while the members were able to communicate with the growing spectators.

When it was working the navigation subsystem was a huge success because the pod was able to read

the felt markers underneath the track. From there it was able to keep track of its location, with relation

to the guide way, and from there depending on the situation, turn specific solenoids on and off

depending on the situation. Finally, it was able to reach its destination depending on the location that

was programmed onto the Arduino.

In addition to this, despite the fact that the speed control was never implemented, the pod was able to

go around the track at a relatively decent speed around the track. The speed that the team chose also

gave the pod the ability to navigate through the gaps that were located near the joint brackets most of

the time.

As previously mentioned, the Controls Team believes that by attending Maker Faire and being able to

run it in conjunction to the computer engineer’s line following robot, the team was able to demonstrate

a proof of concept that ATN can be done. When working in conjunction, the scaled model proved that it

was able to navigate itself around the track, take a shortcut when it needs to, and arrive at its

destination. The line follower, kept generating different values, which simulated the reservation system

and it was able to navigate itself along the course and pick up and let off its potential customer. By

being able to run the two together the Controls Team including the computer engineers, were able to

generate interest among the spectators, receive positive feedback, and most importantly make the

public aware of what Spartan Superway is trying to achieve.

Next Steps

Update Navigation/Object Detection Sensors
On September 13, 2013 a Kickstarter campaign to produce an Arduino-compatible camera system that

incorporates image and color recognition was successfully funded. The system is called CMUcam5, but

is more commonly known as Pixy. Pixy was developed cooperatively between Charmed Labs and

Carnegie Mellon University, and as of April 2014, it is available for purchase at the reasonable price of

approximately $70.

123

Figure 75. Pixy CMUcam5. Pixy is an Arduino-compatible image recognition system that integrates an automotive industry-level
camera.

The Pixy is capable of communicating with any microcontroller that has SPI, I2C, or a universal

asynchronous receiver/transmitter (UART). The actual image processing is done on the Pixy itself, and it

only transmits relevant data to the connected microcontroller to prevent overloading it with the data

stream. The Pixy can be “taught” to recognize objects based on color and shape, and this is further

enhanced by the ability to combine colored shapes to create color codes (CMUcam, 2014). This means

that instead of using felt markers and reflective object sensors to read them, unique color codes could

be placed along the track for more specific signals, such as a particular station, a junction, or the back or

side of another pod. Using color codes to denote the different sides of a pod would allow the pod to

determine its proximity and orientation to another pod, and allow it to prevent collisions, particularly at

merge points.

As image recognition is becoming the standard in autonomous, driverless cars, and also in high-end

assisted cruise control systems like Subaru’s EyeSight system, switching to an image processing based

sensor as early as possible would greatly enhance development of the system. The actual camera within

the Pixy is targeted for the automotive market, and the camera itself can also be replaced as newer and

better cameras become available.

Update Track Design
As previously mentioned, one of the problems with the current scaled model is that the acrylic sections

are very fragile. During Maker’s Faire the team noticed that a lot of people would to lean on the track

more importantly there were several instances when children would run around the track which caused

the team some concern since there were some moments when the kids would accidentally run into the

track. Also, due to carelessness around the track when assembling and dissembling there are many

cracks here and there along the acrylic sections.

If a new track becomes the goal here are some recommendations from the 2013-2014 Controls Team.

First, make the track similar to the current guide way plans, by doing this the public will have an easier

time visualizing the workings of Spartan Superway’s ATN. Second, make the track out of sheet metal

124

that way concerns about the track breaking can be put at ease. Third, make the entire guide way higher

than the current model or create a way inside and outside the track.

If it is decided to continue working with the current model and still work with the reflective sensors

please consider the following. First, play with the idea of making a light box around the reflective

sensors in order to keep out a majority in not all ambient light. Second, round the edges of the support

poles in order to ensure that the poles won’t cut anyone. Third, make one of the curved sections an

entry point and attempt to make that part into a doorway to give easy access to the inside of the track.

125

References
Arduino. (2014, May 21). Arduino Style Guide for Writing Libraries. Retrieved from Arduino:

http://arduino.cc/en/Reference/APIStyleGuide

CMUcam. (2014, May 22). Introduction and Background. Retrieved from CMUcam: Open Source

Programmable Embedded Color Vision Sensors:

http://www.cmucam.org/projects/cmucam5/wiki/Introduction_and_Background

Eckel, T. (2014, May 21). NewPing Library for Arduino. Retrieved from Arduino Playground:

http://playground.arduino.cc/Code/NewPing

Oomlout. (2014, May 21). How to Make Anything (Using Acrylic and Machine Screws). Retrieved from

Instructables: http://www.instructables.com/id/How-to-Make-Anything-Using-Acrylic-and-

Machine-Sc/

SuperWay. (2013). SuperWay - An Solar Powered Automated Transportation System. San Jose: San Jose

State University.

Younkin. (2014, March 3). Measuring Motor Parameters. Retrieved from http://support.ctc-

control.com/customer/elearning/younkin/motorParameters.pdf

126

127

Appendix A: Eccentric Loading Calculations
The calculations for the eccentric loading of the main support column

𝑴𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝒐𝒇 𝒕𝒉𝒆 𝑴𝒂𝒊𝒏 𝑺𝒖𝒑𝒑𝒐𝒓𝒕 𝑪𝒐𝒍𝒖𝒎𝒏

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠: 4 𝑖𝑛. 𝑋 4 𝑖𝑛. 𝑋 .25 𝑖𝑛. 𝑡ℎ𝑖𝑐𝑘 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡𝑢𝑏𝑒, 10 𝑓𝑒𝑒𝑡 𝑙𝑜𝑛𝑔

𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 = 𝐸 = 30 𝑀𝑝𝑠𝑖

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 42 𝑘𝑝𝑠𝑖 | 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

= 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝐴𝑟𝑒𝑎 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 = 𝐼 =
1

12
∗ 𝑏 ∗ ℎ3 = 8.83 𝑖𝑛4

𝐶𝑟𝑜𝑠𝑠 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑟𝑒𝑎 = 𝐴 = 𝑏 ∗ ℎ = 3.75 𝑖𝑛2

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝐺𝑦𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑘 = √
𝐼

𝐴
= 1.53 𝑖𝑛

𝐿𝑒𝑛𝑔𝑡ℎ = 120𝑖𝑛 | 𝑙𝑒𝑓𝑓 = 2.1 ∗ 𝐿𝑒𝑛𝑔𝑡ℎ = 252𝑖𝑛 | 𝐴𝐼𝑆𝐶 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑

− 𝑓𝑟𝑒𝑒 𝑒𝑛𝑑𝑠

𝑆𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 = 𝑆𝑟 =
𝑙𝑒𝑓𝑓

𝑘
= 164

𝐽𝑜ℎ𝑛𝑠𝑜𝑛 → 𝐸𝑢𝑙𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = (𝑆𝑟)𝐷 = 𝜋√
2𝐸

𝑆𝑦𝑐
= 118.7

𝑆𝑟 ≥ (𝑆𝑟)𝐷 ∴ 𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐 𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑖𝑠 𝑊𝑖𝑡ℎ𝑖𝑛 𝐸𝑢𝑙𝑒𝑟 𝑅𝑒𝑔𝑖𝑜𝑛

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 𝑒 = 40𝑖𝑛

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑟𝑜𝑚 𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝐴𝑥𝑖𝑠 = 𝑐 = 2𝑖𝑛

𝐹𝑜𝑟𝑐𝑒 𝑜𝑓 𝑙𝑜𝑎𝑑 = 𝑃𝑙𝑜𝑎𝑑 = 650 𝑙𝑏 ↓

𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝒇𝒐𝒓 𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝑩𝒖𝒄𝒌𝒍𝒊𝒏𝒈 𝑳𝒐𝒂𝒅 𝒂𝒏𝒅 𝑺𝒂𝒇𝒆𝒕𝒚 𝑭𝒂𝒄𝒕𝒐𝒓

𝑆𝑒𝑐𝑎𝑛𝑡 𝐶𝑜𝑙𝑢𝑚𝑛 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 = 𝜎𝑐 =
𝑃

𝐴
[1 + (

𝑒𝑐

𝑘2
) sec (

𝑙𝑒𝑓𝑓

𝑘
√

𝑃

4𝐸𝐴
)]

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑈𝑠𝑒𝑑 𝑡𝑜 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑙𝑦 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑃

𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 3988 𝑙𝑏

128

𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑆𝐹 =
𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝑃𝑙𝑜𝑎𝑑
= 6.1

Appendix B: Bending Stress Calculations
The calculations for bending stresses on the main support column

𝑴𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝒐𝒇 𝒕𝒉𝒆 𝑴𝒂𝒊𝒏 𝑺𝒖𝒑𝒑𝒐𝒓𝒕 𝑪𝒐𝒍𝒖𝒎𝒏

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠: 4 𝑖𝑛. 𝑋 4 𝑖𝑛. 𝑋 .025 𝑖𝑛. 𝑡ℎ𝑖𝑐𝑘 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡𝑢𝑏𝑒, 10 𝑓𝑒𝑒𝑡 𝑙𝑜𝑛𝑔

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 42 𝑘𝑝𝑠𝑖 | 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

= 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝐴𝑟𝑒𝑎 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 = 𝐼 =
1

12
∗ 𝑏 ∗ ℎ3 = 8.83 𝑖𝑛4

𝐹𝑜𝑟𝑐𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑐𝑜𝑙𝑢𝑚𝑛 = 𝑑 = 40𝑖𝑛

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑟𝑜𝑚 𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝐴𝑥𝑖𝑠 = 𝑐 = 2𝑖𝑛

𝐹𝑜𝑟𝑐𝑒 𝑜𝑓 𝑙𝑜𝑎𝑑 = 𝑃𝑙𝑜𝑎𝑑 = 650 𝑙𝑏 ↓

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝐶𝑜𝑙𝑢𝑚𝑛 = 𝑀 = 𝑃𝑙𝑜𝑎𝑑 ∗ 𝑑 = 26,000 𝑙𝑏 ∙ 𝑖𝑛

𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝒇𝒐𝒓 𝑩𝒆𝒏𝒅𝒊𝒏𝒈 𝑺𝒕𝒓𝒆𝒔𝒔 𝒂𝒏𝒅 𝑺𝒂𝒇𝒆𝒕𝒚 𝑭𝒂𝒄𝒕𝒐𝒓

𝑆𝑡𝑟𝑒𝑠𝑠 𝑓𝑟𝑜𝑚 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 = 𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑 =
𝑀𝑐

𝐼
= 5.89 𝑘𝑝𝑠𝑖

𝑆𝑎𝑓𝑡𝑒𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑆𝐹 =
𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑
= 7.1

Appendix B: Bending Stress Calculations
The calculations for bending stresses on the main support column

𝑴𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 𝒐𝒇 𝒕𝒉𝒆 𝑴𝒂𝒊𝒏 𝑺𝒖𝒑𝒑𝒐𝒓𝒕 𝑪𝒐𝒍𝒖𝒎𝒏

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠: 4 𝑖𝑛. 𝑋 4 𝑖𝑛. 𝑋 .025 𝑖𝑛. 𝑡ℎ𝑖𝑐𝑘 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡𝑢𝑏𝑒, 10 𝑓𝑒𝑒𝑡 𝑙𝑜𝑛𝑔

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 42 𝑘𝑝𝑠𝑖 | 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

= 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝐴𝑟𝑒𝑎 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 = 𝐼 =
1

12
∗ 𝑏 ∗ ℎ3 = 8.83 𝑖𝑛4

𝐹𝑜𝑟𝑐𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑐𝑜𝑙𝑢𝑚𝑛 = 𝑑 = 40𝑖𝑛

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑟𝑜𝑚 𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝐴𝑥𝑖𝑠 = 𝑐 = 2𝑖𝑛

𝐹𝑜𝑟𝑐𝑒 𝑜𝑓 𝑙𝑜𝑎𝑑 = 𝑃𝑙𝑜𝑎𝑑 = 650 𝑙𝑏 ↓

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝐶𝑜𝑙𝑢𝑚𝑛 = 𝑀 = 𝑃𝑙𝑜𝑎𝑑 ∗ 𝑑 = 26,000 𝑙𝑏 ∙ 𝑖𝑛

𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝒇𝒐𝒓 𝑩𝒆𝒏𝒅𝒊𝒏𝒈 𝑺𝒕𝒓𝒆𝒔𝒔 𝒂𝒏𝒅 𝑺𝒂𝒇𝒆𝒕𝒚 𝑭𝒂𝒄𝒕𝒐𝒓

𝑆𝑡𝑟𝑒𝑠𝑠 𝑓𝑟𝑜𝑚 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 = 𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑 =
𝑀𝑐

𝐼
= 5.89 𝑘𝑝𝑠𝑖

𝑆𝑎𝑓𝑡𝑒𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐵𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑆𝐹 =
𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑌𝑖𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑
= 7.1

Appendix D: Center of Mass and Moment of Tipping Calculations
Calculations for center of mass and wind speed for tipping

𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝒇𝒐𝒓 𝑪𝒆𝒏𝒕𝒆𝒓 𝒐𝒇 𝑴𝒂𝒔𝒔 𝒐𝒇 𝑺𝒚𝒔𝒕𝒆𝒎 𝒂𝒏𝒅 𝑴𝒐𝒎𝒆𝒏𝒕 𝒂𝒕 𝑻𝒊𝒑𝒑𝒊𝒏𝒈 𝑨𝒙𝒊𝒔

Center of Mass on Cartesian Plane with Origin at Tipping Corner (Figure 4)

Component
Weight

[lb]

Horizontal
Distance from
Tipping Axis

[in]

Horizontal
Distance X

Weight

Vertical
Distance From

Tipping Axis
[in]

Horizontal
Distance X

Weight

Cabin 150 -18 -2700 50 7500

Bogie 317 -18 -5706 102 32334

Guideway 400 -18 -7200 110 44000

Backplate 24 -26 -624 94 2256

Support Arm 74 -42 -3108 94 6956

Tube 262 -56 -14672 60 15720

Baseplate 68 -26 -1768 0 0

SideBase 36 -56 -2016 0 0

SideBrace 48 -56 -2688 0 0

LongBrace 68 -27 -1836 0 0

Total/Average 1447 -29.25 -42318 75.17 108766

Parameters Used For Wind Load Calculations

Component
Cross Sectional Area for

Horizontal Wind Load [in2]
Vertical Distance for Resultant

Wind Force [in]

Solar Panels 3456 156

Guideway 6912 102

Support Column 960 60

Cabin 4608 48

𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔 𝒇𝒐𝒓 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑾𝒊𝒏𝒅 𝑺𝒑𝒆𝒆𝒅, 𝒂𝒏𝒅 𝑺𝒂𝒇𝒆𝒕𝒚 𝑭𝒂𝒄𝒕𝒐𝒓 𝒘𝒉𝒆𝒏 𝑻𝒊𝒑𝒑𝒊𝒏𝒈

𝐹𝑜𝑟𝑐𝑒 𝑜𝑓 𝑊𝑖𝑛𝑑 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑜𝑛 𝑂𝑏𝑗𝑒𝑐𝑡 = 𝐹𝑤𝑖𝑛𝑑 = 𝐴𝑟𝑒𝑎 × 𝑊𝑖𝑛𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 𝑜𝑓 𝐷𝑟𝑎𝑔

𝑊𝑖𝑛𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 [
𝑙𝑏

𝑖𝑛2
] = 0.0000178 × 𝑣2 | 𝑣 𝑖𝑠 𝑖𝑛 𝑚𝑝ℎ

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 𝑜𝑓 𝐷𝑟𝑎𝑔 𝑜𝑛 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝐵𝑜𝑥 = 𝐶 = 2.1

𝑀𝑜𝑚𝑒𝑛𝑡 𝑡𝑜 𝑂𝑣𝑒𝑟𝑐𝑜𝑚𝑒 𝑏𝑦 𝑊𝑖𝑛𝑑 𝐹𝑜𝑟𝑐𝑒 = 𝑀𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑋𝑐𝑚 × 𝑊𝑡𝑜𝑡𝑎𝑙 = 42318 𝑙𝑏 ∙ 𝑖𝑛

𝑊𝑖𝑛𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑜 𝑂𝑣𝑒𝑟𝑐𝑜𝑚𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑣𝑡𝑖𝑝𝑝𝑖𝑛𝑔 = √
𝑀𝑤𝑒𝑖𝑔ℎ𝑡

0.0000178 × 𝐶 ∑ 𝐴𝑖𝑑𝑖
= 27 𝑚𝑝ℎ

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑊𝑖𝑛𝑑 𝐹𝑜𝑟𝑐𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑠 = 𝑑𝑤𝑖𝑛𝑑 = 95 𝑖𝑛

𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑊𝑖𝑛𝑑 𝐹𝑜𝑟𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑇𝑖𝑝 = 𝐹𝑤𝑖𝑛𝑑 = 443 𝑙𝑏

132

𝑊𝑖𝑛𝑑 𝐹𝑜𝑟𝑐𝑒 𝑎𝑛𝑑 𝐿𝑜𝑎𝑑 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑛 𝑎 𝑆𝑖𝑛𝑔𝑙𝑒 𝐿𝑎𝑟𝑔𝑒 𝐴𝑛𝑔𝑙𝑒𝑑 𝐵𝑟𝑎𝑐𝑒 𝑀𝑒𝑚𝑏𝑒𝑟 = 𝐹𝑡𝑜𝑡𝑎𝑙 = 821 𝑙𝑏

𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐿𝑎𝑟𝑔𝑒 𝐴𝑛𝑔𝑙𝑒𝑑 𝐵𝑟𝑎𝑐𝑒 𝑀𝑒𝑚𝑏𝑒𝑟 𝑈𝑛𝑑𝑒𝑟 𝑇𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑆𝐹 =
𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝐹𝑡𝑜𝑡𝑎𝑙

= 1.67

Appendix E: System Integrity Calculations
Calculations to determine system integrity at maximum tipping angle

𝐴𝑛𝑔𝑙𝑒 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑠 𝑇𝑖𝑝𝑝𝑒𝑑 𝑤ℎ𝑒𝑛 𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑀𝑎𝑠𝑠 𝑖𝑠 𝑎𝑏𝑜𝑣𝑒 𝑇𝑖𝑝𝑝𝑖𝑛𝑔 𝐴𝑥𝑖𝑠 = 𝜃 = tan−1 (
29.25

75.17
)

= 21.26°

𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑀𝑒𝑚𝑏𝑒𝑟 𝑜𝑓𝑓 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑤ℎ𝑒𝑛 𝑇𝑖𝑝𝑝𝑒𝑑 = 51.26°

𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑆𝑦𝑠𝑡𝑒𝑚 𝑎𝑡 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇𝑖𝑝 𝑎𝑛𝑔𝑙𝑒 = 𝑀𝑚𝑎𝑥 = 58147 𝑙𝑏 ∙ 𝑖𝑛

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐵𝑟𝑎𝑐𝑒 𝑀𝑒𝑚𝑏𝑒𝑟 = 𝑃𝑚𝑎𝑥 =
𝑀𝑚𝑎𝑥

29 𝑖𝑛 ∙ cos(51.26) ∙ 2
= 1600 𝑙𝑏

𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐵𝑟𝑎𝑐𝑒 𝑈𝑛𝑑𝑒𝑟 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝑜𝑚𝑒𝑛𝑡 𝑇𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑆𝐹 =
𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝑃𝑚𝑎𝑥
= 0.86

Appendix F: Guideway SolidWorks Analysis
Study Properties

Study name Study 1

Analysis type Static

Mesh type Solid Mesh

Thermal Effect: On

Thermal option Include temperature loads

Zero strain temperature 298 Kelvin

Include fluid pressure effects from
SolidWorks Flow Simulation

Off

Solver type FFEPlus

Inplane Effect: Off

Soft Spring: Off

Inertial Relief: Off

Incompatible bonding options Automatic

Large displacement Off

Compute free body forces On

Friction Off

Use Adaptive Method: Off

Result folder SolidWorks document
(C:\Users\Daniel\Dropbox\Reference\Previous
Classes\SJSU - Spring 2014\ENGR 195D Senior
Project\Wood Model)

Units

Unit system: SI (MKS)

Length/Displacement mm

Temperature Kelvin

Angular velocity Rad/sec

Pressure/Stress N/m^2

135

Material Properties

Model Reference Properties Components

Name: Plain Carbon
Steel

Model
type:

Linear Elastic
Isotropic

Default
failure

criterion:

Unknown

Yield
strength:

2.20594e+008
N/m^2

Tensile
strength:

3.99826e+008
N/m^2

Elastic
modulus:

2.1e+011
N/m^2

Poisson's
ratio:

0.28

Mass
density:

7800 kg/m^3

Shear
modulus:

7.9e+010
N/m^2

Thermal
expansion

coefficient:

1.3e-005
/Kelvin

SolidBody
1(Mirror2)(Support_mounting_plate-
2),
SolidBody 1(Boss-
Extrude1)(support_arm-1),
SolidBody 1(Boss-
Extrude1)(support_arm-2),
SolidBody 1(Boss-
Extrude1)(support_base_long-1),
SolidBody 1(Boss-
Extrude1)(support_base_short-1),
SolidBody 1(Boss-
Extrude1)(support_base_short-3),
SolidBody 1(Boss-
Extrude1)(support_brace_long-1),
SolidBody 1(Boss-
Extrude1)(support_brace_long-2),
SolidBody 1(Boss-
Extrude1)(support_brace_short-1),
SolidBody 1(Boss-
Extrude1)(support_brace_short-2),
SolidBody 1(Boss-
Extrude1)(support_brace_short-4),
SolidBody 1(Boss-
Extrude1)(support_brace_short-5),
SolidBody 1(Boss-
Extrude1)(support_post-1)

Curve Data:N/A

136

Loads and Fixtures

Fixture
name

Fixture Image Fixture Details

Fixed-1

Entities: 3 face(s)
Type: Fixed

Geometry

Resultant Forces
Components X Y Z Resultant

Reaction force(N) 4.08361 4447.7 -5.36478 4447.7

Reaction
Moment(N·m)

0 0 0 0

Load
name

Load Image Load Details

Force-
1

Entities: 1 face(s)
Type: Apply normal force

Value: 1000 lbf

Connector Definitions
No Data

137

Contact Information

Contact Contact Image Contact Properties

Global
Contact

Type: Welded
Components: 1

component(s)
Options: Compatible

mesh

138

Mesh Information

Mesh type Solid Mesh

Mesher Used: Standard mesh

Automatic Transition: Off

Include Mesh Auto Loops: Off

Jacobian points 4 Points

Element Size 1.793 in

Tolerance 0.0896502 in

Mesh Quality High

Remesh failed parts with incompatible mesh Off

Mesh Information - Details

Total Nodes 19951

Total Elements 9399

Maximum Aspect Ratio 53.153

% of elements with Aspect Ratio < 3 12.7

% of elements with Aspect Ratio > 10 2.47

% of distorted elements(Jacobian) 0

Time to complete mesh(hh;mm;ss): 00:00:05

Computer name: DANIEL-PC

139

Sensor Details
No Data

Resultant Forces

Reaction Forces

Selection set Units Sum X Sum Y Sum Z Resultant

Entire Model N 4.08361 4447.7 -5.36478 4447.7

Reaction Moments

Selection set Units Sum X Sum Y Sum Z Resultant

Entire Model N·m 0 0 0 0

Beams
No Data

140

Study Results

Name Type Min Max

Stress1 VON: von Mises Stress 0.129884 N/m^2
Node: 7238

6.6464e+007 N/m^2
Node: 6717

support_complete-Study 1-Stress-Stress1

Name Type Min Max

Displacement1 URES: Resultant Displacement 0 mm
Node: 6923

12.2811 mm
Node: 13618

141

support_complete-Study 1-Displacement-Displacement1

Name Type Min Max

Strain1 ESTRN: Equivalent Strain 7.18254e-013
Element: 3911

0.000214963
Element: 8751

142

support_complete-Study 1-Strain-Strain1

Name Type

Displacement1{1} Deformed Shape

143

support_complete-Study 1-Displacement-Displacement1{1}

144

Appendix G: Guideway Part Drawings

145

146

147

148

149

150

151

Appendix H: Guideway Assembly Drawings

152

153

154

155

156

157

158

159

Appendix I: Bogie Design Requirements
Bogie Design Goals and Objectives

1. The bogie must be able to suspend the pod cabin.

1.1. The bogie should be able to suspend the cabin’s weight in both dynamic and static

conditions.

1.1.1. The bogie must be able to suspend the mass of the cabin during cornering at

specified speeds and radii.

1.1.2. Bogie must be able to suspend the mass of the cabin over crests and dips in the

guideway.

1.2. The bogie must be able to mount to the specified cabin top surface and frame design.

2. The bogie must be able to travel and navigate through the Superway guideway network.

2.1. The bogie must be able to interface with power conduits placed along the guideway.

2.1.1. Bogie must interface with power conduits during all operations, including

guideway switching.

2.1.2. Power from conduit must be transmitted to cabin.

2.2. The bogie must have variable acceleration and speed capabilities up to its performance

targets.

2.3. The bogie must be able to navigate guideway corners.

2.3.1. Bogie must be able to navigate the tightest specified/possible radii.

2.3.2. Bogie must smoothly ride around corners (no crashing into guideway walls).

2.4. The bogie will be able to switch between guideways.

2.4.1. Bogie will not be jolted when switching guideways.

2.4.2. Switch will not be capable of making an “indecisive guideway selection”.

2.5. The bogie must be able to climb and descend maximum specified grades.

2.6. The bogie must be able to coordinate with station procedures.

2.6.1. Bogie must operate at a reduced speed and stop and accordingly.

2.6.2. Bogie must be able to hold steady during boarding and offloading at stations.

2.7. The bogie must provide a comfortable ride.

2.7.1. Vibration must be dampened/minimized within the guideway interface.

2.7.2. Vibration must be dampened/minimized at the cabin interface.

2.7.3. Bogie must allow the pod to bank during cornering.

3. The bogie must be able to perform emergency operations.

3.1. The bogie must be able to perform an emergency stop when prompted.

3.1.1. Bogie must have an electrical cut off/safety switch.

3.1.2. Bogie must have a manual emergency braking system.

3.2. The bogie must be able to interface with emergency power or tow vehicle.

3.3. The bogie must maintain basic functionality during a power loss.

3.3.1. The guideway switching mechanism state must be unaffected by a power loss.

3.3.2. The manual emergency braking system must function during a power loss.

160

4. The bogie must be optimized for the operating efficiency.

4.1. The bogie must be able to consume as little as power to meet speed and acceleration

targets.

4.2. The bogie must be able to recapture braking energy during normal operation.

5. The bogie must meet reliability targets

5.1. The bogie drivetrain must have a long life cycle .

5.2. The bogie chassis and support wheels and bearings must have a long life cycle.

5.3. The guideway switch must be designed for infinite life.

5.4. The bogie must be able to dissipate heat effectively from the drive system.

5.5. The power interface must have a long life cycle.

5.6. The Sway damper must have a long life cycle.

5.7. The Emergency Brake must prove reliable in testing.

161

Appendix J: Bogie Design Specifications
This document was created to outline the specifications of the proposed bogie design under the

Superway Autonomous Transportation Network (ATN) project for the 2013-2014 SJSU Senior Design

term. This document contains projected performance and dimension specifications of the bogie design

based on sourced hardware, simulation, and calculation. Subjects addressed are material usage, motor

specification, wheel and chassis dimensions, hydraulic traction adjustment, the track switching

mechanism, power interface, and suspension.

1. Chassis:

1.1. Structure [1][3.2]

1.1.1. Mounting Points: The Structural Frame of the Bogie will have mounting

points for the propulsion system, the rolling system, the switching system, and

all other bogie components.

1.1.2. Strength: The Structural Frame of the Bogie will be strong enough to

support the weight of the cabin suspended from a minimum of 4 mounting

points and supported by the support wheels. It will be strong enough to support

the weight of the cabin during cornering forces of up to 1g.

1.1.3. Tow Points: The Structural Frame of the Bogie will have tow points for

the tow bogie to attach to.

1.2. Rolling System [2.3][2.7.1]

1.2.1. Configuration: The support wheels will be horizontal and vertical rollers

which run upon the lower flanges as well as center of the guideway profile,

enabling them to suspend and stabilize the bogie within the track.

1.2.2. Safety: The rollers will be non-pneumatic wheels in order to prevent flat-

tire derailments.

1.2.3. Cornering ability: The Rolling System will be able to navigate a

guideway corner with an 8 meter radius.

1.2.4. Traction: The rollers will be made from an elastic material in order to

improve traction and minimize vibration.

2. Propulsion:

2.1. Powertrain [2.2][2.6.1][4.2][4.3]

2.1.1. Speed: The propulsion system will allow the pod to reach speeds up to 26

m/s.

2.1.2. Acceleration: The propulsion system will allow the pod to accelerate and

decelerate at 2m/s2 on horizontal sections of guideway.

2.1.3. Climbing Speed: The propulsion system will allow the pod to maintain

speeds of up to 15 m/s up a grade of 10%.

2.1.4. Variable Acceleration: The propulsion system will have variable

acceleration/deceleration and speed control.

2.1.5. Emergency Stops: The propulsion system will be able to perform

emergency stops or be able to be overridden in emergency situations.

162

2.1.6. Regenerative Braking: The powertrain will be able to capture a

minimum of 60% of the braking energy and return it to the system in some

useful form.

3. Switching System [2.4][3.3.1]

3.1. Decisive Switch: The system will be mechanically incapable of engaging both sides of

the switching flange at once.

3.2. Passive Support: The system will maintain its position during a power failure.

4. Swing System [1.1.1][1.2][2.7.2][2.7.3]

4.1. Hinge Support

4.1.1. Strength: The hinge support will be strong enough to support the cabin

during cornering of up to 1g.

4.1.2. Cabin Mounts: The hinge support will be able to mount to the cabin

through some sort of elastic bushing to minimize vibration.

4.2. Sway Control

4.2.1. Wind Resistance: The sway control system will minimize rocking due to

gusts of wind

4.2.2. Damping: The sway control system will properly dampen the swinging

of the cabin to prevent it from swinging when on a straight section of

guideway.

4.2.3. Maximum Swing angle: The sway control system will limit the swinging

of the cabin to an angle of 30 degrees off center

5. Power Interface [2.1]

5.1. Power: The Power interface will deliver 3-phase power at 460 Volts.

6. Emergency Mechanisms

6.1. Emergency Brakes [3.1.2][3.3.2]

6.1.1. Manual Brakes: A manual activated braking system will enable to bogie

to stop at a rate of no more than 0.6g even during a total failure of all electrical

systems

6.2. Mechanical Cut Off [3.1.1]

6.2.1. Manual Cut Off: A mechanical cut off will engage when the manual

brakes are applied.

6.2.2. Remote Cut Off: A mechanical cut off will be able to be engaged

remotely.

163

164

Appendix K: Bogie Static Analysis

Full Bogie Static Analysis RPT. file

--

Creo Simulate Structure Version P-10-17:spg

Summary for Design Study "Analysis1"

Wed May 07, 2014 12:33:24

--

Run Settings

 Memory allocation for block solver: 3500.0

Parallel Processing Status

 Parallel task limit for current run: 8

 Parallel task limit for current platform: 64

 Number of processors detected automatically: 8

Checking the model before creating elements...

These checks take into account the fact that AutoGEM will

automatically create elements in volumes with material

properties, on surfaces with shell properties, and on curves

with beam section properties.

 Generate elements automatically.

Checking the model after creating elements...

No errors were found in the model.

Creo Simulate Structure Model Summary

 Principal System of Units: Inch Pound Second (IPS)

 Length: in

165

 Force: lbf

 Time: sec

 Temperature: F

 Model Type: Three Dimensional

 Points: 8958

 Edges: 45142

 Faces: 63863

 Springs: 0

 Masses: 0

 Beams: 0

 Shells: 0

 Solids: 27731

 Elements: 27731

--

Standard Design Study

Static Analysis "Analysis1":

 Convergence Method: Multiple-Pass Adaptive

 Plotting Grid: 4

 Convergence Loop Log: (12:34:09)

 >> Pass 1 <<

166

 Calculating Element Equations (12:34:10)

 Total Number of Equations: 26508

 Maximum Edge Order: 1

 Solving Equations (12:34:10)

 Post-Processing Solution (12:34:10)

 Calculating Disp and Stress Results (12:34:11)

 Checking Convergence (12:34:30)

 Elements Not Converged: 27731

 Edges Not Converged: 45142

 Local Disp/Energy Index: 100.0%

 Global RMS Stress Index: 100.0%

 Resource Check (12:34:31)

 Elapsed Time (sec): 66.92

 CPU Time (sec): 52.67

 Memory Usage (kb): 8674344

 Wrk Dir Dsk Usage (kb): 221184

 >> Pass 2 <<

 Calculating Element Equations (12:34:31)

 Total Number of Equations: 161202

 Maximum Edge Order: 2

 Solving Equations (12:34:32)

 Post-Processing Solution (12:34:35)

 Calculating Disp and Stress Results (12:34:38)

 Checking Convergence (12:34:55)

 Elements Not Converged: 9746

 Edges Not Converged: 14967

 Local Disp/Energy Index: 100.0%

 Global RMS Stress Index: 87.3%

 Resource Check (12:34:56)

167

 Elapsed Time (sec): 92.50

 CPU Time (sec): 67.13

 Memory Usage (kb): 8674344

 Wrk Dir Dsk Usage (kb): 221184

 >> Pass 3 <<

 Calculating Element Equations (12:34:56)

 Total Number of Equations: 516659

 Maximum Edge Order: 4

 Solving Equations (12:35:02)

 Post-Processing Solution (12:35:12)

 Calculating Disp and Stress Results (12:35:19)

 Checking Convergence (12:35:35)

 Elements Not Converged: 6900

 Edges Not Converged: 1592

 Local Disp/Energy Index: 100.0%

 Global RMS Stress Index: 44.4%

 Resource Check (12:35:36)

 Elapsed Time (sec): 132.06

 CPU Time (sec): 113.21

 Memory Usage (kb): 8674344

 Wrk Dir Dsk Usage (kb): 606208

 >> Pass 4 <<

 Calculating Element Equations (12:35:36)

 Total Number of Equations: 839769

 Maximum Edge Order: 6

 Solving Equations (12:35:47)

 Post-Processing Solution (12:36:06)

 Calculating Disp and Stress Results (12:36:15)

168

 Checking Convergence (12:36:33)

 Elements Not Converged: 3900

 Edges Not Converged: 0

 Local Disp/Energy Index: 100.0%

 Global RMS Stress Index: 31.0%

 Resource Check (12:36:35)

 Elapsed Time (sec): 191.58

 CPU Time (sec): 215.33

 Memory Usage (kb): 8674344

 Wrk Dir Dsk Usage (kb): 1098752

 >> Pass 5 <<

 Calculating Element Equations (12:36:36)

 Total Number of Equations: 1238710

 Maximum Edge Order: 7

 Solving Equations (12:37:32)

 Post-Processing Solution (12:38:53)

 Calculating Disp and Stress Results (12:39:10)

 Checking Convergence (12:39:40)

 Elements Not Converged: 799

 Edges Not Converged: 0

 Local Disp/Energy Index: 96.6%

 Global RMS Stress Index: 8.4%

 Resource Check (12:40:04)

 Elapsed Time (sec): 400.81

 CPU Time (sec): 443.96

 Memory Usage (kb): 8674344

 Wrk Dir Dsk Usage (kb): 6650880

 >> Pass 6 <<

169

 Calculating Element Equations (12:40:05)

 Total Number of Equations: 1673248

 Maximum Edge Order: 8

 Solving Equations (12:41:58)

 Post-Processing Solution (12:45:35)

 Calculating Disp and Stress Results (12:45:58)

 Checking Convergence (12:47:02)

 Elements Not Converged: 120

 Edges Not Converged: 0

 Local Disp/Energy Index: 30.3%

 Global RMS Stress Index: 6.5%

 Resource Check (12:47:39)

 Elapsed Time (sec): 855.32

 CPU Time (sec): 926.94

 Memory Usage (kb): 8674344

 Wrk Dir Dsk Usage (kb): 11039744

 >> Pass 7 <<

 Calculating Element Equations (12:47:39)

 Total Number of Equations: 2097235

 Maximum Edge Order: 9

 Solving Equations (12:50:48)

 Post-Processing Solution (13:00:34)

 Calculating Disp and Stress Results (13:02:10)

 Checking Convergence (13:04:13)

 Elements Not Converged: 4

 Edges Not Converged: 0

 Local Disp/Energy Index: 10.7%

 Global RMS Stress Index: 5.4%

170

 RMS Stress Error Estimates:

 Load Set Stress Error % of Max Prin Str

 ---------------- ------------ -----------------

 LoadSet1 6.90e+01 0.3% of 2.18e+04

** Warning: Convergence was not obtained because the maximum

 polynomial order of 9 was reached.

 Resource Check (13:05:12)

 Elapsed Time (sec): 1907.85

 CPU Time (sec): 1870.58

 Memory Usage (kb): 8674344

 Wrk Dir Dsk Usage (kb): 16633856

 The analysis did not converge to within 10% on

 edge displacement, element strain energy,

 and global RMS stress.

 Total Mass of Model: 1.647274e+00

 Total Cost of Model: 0.000000e+00

 Mass Moments of Inertia about WCS Origin:

 Ixx: 1.15974e+03

 Ixy: 2.58887e+02 Iyy: 7.62509e+02

 Ixz: -9.08058e+01 Iyz: 2.91361e+02 Izz: 1.63793e+03

 Principal MMOI and Principal Axes Relative to WCS Origin:

171

 Max Prin Mid Prin Min Prin

 1.72633e+03 1.28288e+03 5.50975e+02

 WCS X: -2.41962e-02 9.11491e-01 -4.10608e-01

 WCS Y: 2.83321e-01 4.00141e-01 8.71560e-01

 WCS Z: 9.58720e-01 -9.52456e-02 -2.67927e-01

 Center of Mass Location Relative to WCS Origin:

 (-6.99839e+00, 2.24552e+01, -7.87680e+00)

 Mass Moments of Inertia about the Center of Mass:

 Ixx: 2.26926e+02

 Ixy: 1.76222e-02 Iyy: 5.79626e+02

 Ixz: -2.38960e-08 Iyz: 1.81718e-06 Izz: 7.26638e+02

 Principal MMOI and Principal Axes Relative to COM:

 Max Prin Mid Prin Min Prin

 7.26638e+02 5.79626e+02 2.26926e+02

 WCS X: 6.17586e-13 4.99635e-05 1.00000e+00

 WCS Y: 1.23607e-08 1.00000e+00 -4.99635e-05

 WCS Z: 1.00000e+00 -1.23607e-08 0.00000e+00

 Constraint Set: ConstraintSet1: BOGIEANALYSIS

 Load Set: LoadSet1: BOGIEANALYSIS

 Resultant Load on Model:

 in global X direction: 2.549112e-09

 in global Y direction: -5.000000e+02

 in global Z direction: 2.376936e-09

172

 Measures:

 Name Value Convergence

 -------------- ------------- -----------

 max_beam_bending: 0.000000e+00 0.0%

 max_beam_tensile: 0.000000e+00 0.0%

 max_beam_torsion: 0.000000e+00 0.0%

 max_beam_total: 0.000000e+00 0.0%

 max_disp_mag: 1.139629e-02 0.2%

 max_disp_x: -2.690803e-03 0.1%

 max_disp_y: -1.136679e-02 0.2%

 max_disp_z: 9.177293e-04 0.2%

 max_prin_mag*: -2.180339e+04 13.1%

 max_rot_mag: 0.000000e+00 0.0%

 max_rot_x: 0.000000e+00 0.0%

 max_rot_y: 0.000000e+00 0.0%

 max_rot_z: 0.000000e+00 0.0%

 max_stress_prin*: 1.341492e+04 8.3%

 max_stress_vm*: 1.454146e+04 13.0%

 max_stress_xx*: -1.524289e+04 9.2%

 max_stress_xy*: 7.537692e+03 13.4%

 max_stress_xz*: -3.454368e+03 5.0%

 max_stress_yy*: -1.328363e+04 13.7%

 max_stress_yz*: -5.153434e+03 8.7%

 max_stress_zz*: -8.612713e+03 9.9%

 min_stress_prin*: -2.180339e+04 13.1%

 strain_energy: 2.838509e+00 0.2%

 ** Warning: The measures marked by an asterisk (*) were evaluated

 at (or close to) results singularities. The values of these

173

 measures may be inaccurate, and you must use engineering judgment

 when interpreting them.

Analysis "Analysis1" Completed (13:05:12)

--

Memory and Disk Usage:

 Machine Type: Windows 7 64 Service Pack 1

 RAM Allocation for Solver (megabytes): 3500.0

 Total Elapsed Time (seconds): 1913.96

 Total CPU Time (seconds): 1871.50

 Maximum Memory Usage (kilobytes): 8674344

 Working Directory Disk Usage (kilobytes): 16633856

 Results Directory Size (kilobytes):

 476043 .\Analysis1

 Maximum Data Base Working File Sizes (kilobytes):

 1048576 .\Analysis1.tmp\kblk1.bas

 1048576 .\Analysis1.tmp\kblk10.bas

 1048576 .\Analysis1.tmp\kblk11.bas

 117760 .\Analysis1.tmp\kblk12.bas

 1048576 .\Analysis1.tmp\kblk2.bas

 1048576 .\Analysis1.tmp\kblk3.bas

 1048576 .\Analysis1.tmp\kblk4.bas

 1048576 .\Analysis1.tmp\kblk5.bas

 1048576 .\Analysis1.tmp\kblk6.bas

 1048576 .\Analysis1.tmp\kblk7.bas

174

 1048576 .\Analysis1.tmp\kblk8.bas

 1048576 .\Analysis1.tmp\kblk9.bas

 1048576 .\Analysis1.tmp\kel1.bas

 1048576 .\Analysis1.tmp\kel2.bas

 1048576 .\Analysis1.tmp\kel3.bas

 1048576 .\Analysis1.tmp\kel4.bas

 231424 .\Analysis1.tmp\kel5.bas

 556032 .\Analysis1.tmp\oel1.bas

--

Run Completed

Wed May 07, 2014 13:05:20

--

175

Appendix L: Engineering Drawings
2x Main Axle (inches)

2x H-Bar long member (inches)

4x H-bar Axle (inches) 1x H-Bar short member (inches)

2x Steering arm (inches)

176

2x Steering arm axle (inches)

4x upper tubing (inches)

8x upper axles (inches)

2x Reciever tube (inches)

177

2x Lower 2” tube (inches)

4x Lower axles (inches)

4x H-bar connecter 2” tube (inches)

178

4x Plasma Cut ¼” steel plate (mm)

179

180

Appendix M: Bogie Assembly Drawings

Assembled steering arm

Assembled h-bar

General wheel sizing

181

Assembly w/o wheels or dimensions

182

Assembly w/o wheels with dimensions

183

Assembly with wheels, no dimensions

184

185

Assembled with wheels and dimensions

186

187

188

Appendix N: Bogie Bill of Materials

4x Plasma Cut ¼” thick steel plate

3’ 1” diameter Cold-Rolled 1018 steel bar

40’ ¾” diameter Cold-Rolled 1018 steel bar

10’ 2”x2”x0.120 Square tubing A513 steel

2’ 2”x2” receiver tube

4’ 2” Steel Pipe (exhaust grade)

8x Sunray 6.75”x2.00” S6-N6L2XA 60D Orange Polyethylene wheels

6x Sunray 5.25”x2.00” S9-N5D2XA 60D Green Polyethylene wheels

4x Hamilton W-1220-MT-1 with Tapered bearings

8x 2” black oxide coated mild steel collar clamps

4x 1” black oxide coated mild steel collar clamps

30x ¾” black oxide coated mild steel collar clamps

4x 20x35x10mm Thrust bearings

10x 18-8 Stainless Steel Round Shim, 0.090” Thick 1” inner dia 1-1/2” outer dia

50x ¾” SAE standard Flat Washer zinc plated

189

Appendix O: Cabin Bill of Materials

Item Vendor

Product

Size Price

Quantit

y Total

Styrofoam Home Depot 614-645 1.5"x4'x8'

 $

16.28 10

 $

162.80

Flat Punch Zinc Home Depot 584-265

1

3/8"x1/16"x48"

 $

6.51 2

 $

13.02

Bolts Home Depot 661-767 5/16"x1 1/2"

 $

0.20 6

 $

1.20

Washer Home Depot 328-141 5/16"

 $

2.68 1

 $

2.68

Nuts Home Depot 328-639 5/16"

 $

2.46 1

 $

2.46

Plastic Dip Home Depot 11oz

 $

5.98 5

 $

29.90

SHS Super Gold

Glue

Sheldon's Hobby

Shop 1oz

 $

12.99 2

 $

25.98

10%

discount

 $

24.68

Plywood

Sheldon's Hobby

Shop 1/32"x12"x48"

 $

19.99 5

 $

99.95

10%

discount

 $

97.95

Thermal Shrink

Sheldon's Hobby

Shop

 $

17.99 2

 $

35.98

10%

discount

 $

34.18

 $

368.87

190

Appendix P: Cabin Drawings
Top H_Bar (Inches)

Bottom H_Bar (Inches)

191

Cabin Connection (Inches)

Frame (Inches)

192

193

194

Appendix Q: MATLAB Code for Speed Control PID Tuning
%% ME 195D - Spring 2014 - DC Motor PID Tuning

% Description: MATLAB script used to calculate DC motor transfer function

% then using pidtool() to graphically tune the PID to acquire

% the gain constants Kp, Ki, Kd that yield the desired system

% response characteristics

% Team members: Cory Ostermann

% Man Ho

% Randall Morioka

%

clear;

clc;

J = 5.051*10^(-7); %calculated wheel moment of inertia

b = 3.913*10^(-5); %calculated motor viscous friction constant

K = 0.0584; %calculated motor torque/EMF constant

R = 2.895; %motor armature resistance

L = 0.161; %motor armature inductance

s = tf('s');

P_motor = K/((J*s+b)*(L*s+R)+(K^2)) %DC motor transfer function

figure(1);

step(P_motor); %plot step response of open-loop system without any control

title('Uncompensated Step Response of DC Motor');

Kp = 0; %arbitrary Kp value to establish baseline control system

Ki = 0.2892; %arbitrary Ki value to establish baseline control system

Kd = 0; %arbitrary Kd value to establish baseline control system

C = pid(Kp,Ki,Kd) %create PID motor control

Gcl = feedback(P_motor*C,1)

figure(2);

step(Gcl);

title('Compensated Step Response of DC Motor');

figure(3);

rlocus(Gcl);

title('Root Locus of Closed-loop System');

figure(4);

bode(Gcl);

title('Bode Plots of Closed-loop System');

%pidtool(P_motor,C); %call PID GUI to tune Kp,Ki,Kd

195

Appendix R: Arduino PID Speed Control Source Code
/*

 * Speed and Acceleration Control for DC Motor

 * ENGR 195D - Spring 2014 - Spartan Superway

 *

 * Description: Controlling DC motor to achieve and maintain desired speed

 * while not exceeding maximum acceleration of 0.25g.

 * PID parameter acquired based on motor characteristics

 * and through MATLAB

 * Adapted from: Test MD03a -----

 * http://forum.arduino.cc/index.php/topic,8652.0.html

 *

 * Team members: Cory Ostermann

 * Man Ho

 * Randall Morioka

 * Notes: Code not completely tested flawless operations.

 */

 #define M1 10

 #define M2 11

 #define PWMM 6

 #define encoder1 3 //encoder pin A

 #define encoder2 8 //encoder pin B

 #define PIDloop 100 //PID loop time

 unsigned long lastMillis = 0;

 unsigned long lastMillisPrint = 0;

 int set_speed = 300; //set speed

 int act_speed = 0; //actual speed

 int PWM_val = 0; //(25% = 64; 50% = 127; 75% = 191; 100% = 255)

 volatile long count = 0; //rev counter

 float Kp = 0; //PID Proportional control gain

 float Ki = 0.2892; //PID Integral control gain

 float Kd = 0; //PID Derivative control gain

 void setup()

 {

 Serial.begin(115600);

 pinMode(M1, OUTPUT);

 pinMode(M2, OUTPUT);

 pinMode(PWMM, OUTPUT);

 pinMode(encoder1, INPUT);

 pinMode(encoder2, INPUT);

 //turns on pull-up resistor

 digitalWrite(encoder1, HIGH);

 digitalWrite(encoder2, HIGH);

 attachInterrupt(1, rencoder, FALLING);

 analogWrite(PWMM, PWM_val);

 digitalWrite(M1, LOW);

 digitalWrite(M2, HIGH);

 }

 void loop()

 {

 if((millis() - lastMillis) >= PIDloop)

196

 {

 lastMillis = millis();

 getSpeed(); //calculate motor speed

 PWM_val = updatePID(PWM_val, set_speed, act_speed); //calculcate PWM

 //output

 analogWrite(PWMM, PWM_val); //output PWM signal to motor

 }

 }

 void getSpeed()

 {

 static long countAnt = 0;

 //20 counts per revolution of backshaft x 30 backshaft rev per frontshaft

 //rev = 600 counts/frontshaft rev

 act_speed = ((count - countAnt)*(60*(1000/PIDloop)))/(20*30);

 countAnt = count;

 }

 int updatePID(int command, int targetVal, int currentVal)

 {

 float PIDterm = 0;

 int error = 0;

 static int last_error = 0;

 error = abs(targetVal) - abs(currentVal);

 PIDterm = (Kp * error) + (Ki*(error + last_error)) + (Kd*(error -

last_error));

 last_error = error;

 return constrain(command + int(PIDterm), 0, 255);

 }

 void rencoder()

 { // pulse and direction, direct port

 //reading to save cycles

 // if(digitalRead(encodPinB1)==HIGH) count ++;

 if (PINB & 0b00000001)

 {

 count++;

 }

 // if (digitalRead(encodPinB1)==LOW) count --;

 else

 {

 count--;

 }

 }

197

Appendix S: Arduino Maker Faire Sketch
/*

Spartan Superway 1/12 Scale Model Maker Faire Demonstration Sketch

2013-2014 ENGR 195D / Spartan Superway

Created by: Cory Ostermann, Man Ho, Randall Morioka, Eriberto Velzquez, and

Anthony Vo

This sketch provides functionality for a user to send new destinations to a

pod via an SJOne microcontroller connected to a laptop.

*/

#include "SPI.h"

#include "NewPing.h"

// Starting Location Variables:

#define START_NODE 0

#define START_LINE 0

#define START_TICK 1

#define START_DESTINATION -1

// Pin definitions:

#define TRACK_OFFLINE A0 // The pin attached to the Offline reflective

object sensor

#define TRACK_ONLINE A1 // The pin attached to the Online reflective object

sensor

#define SWITCH_OFFLINE 4 // The pin attached to solenoid actuating the

Offline Switch

#define SWITCH_ONLINE 5 // The pin attached to solenoid actuating the

Online Switch

#define MOTOR_A1 3

#define MOTOR_A2 2

#define TRIG 6

#define ECHO 7

// Miscellaneous definitions:

#define ONLINE 1

#define OFFLINE 0

#define THRESHOLD_ONLINE 100 // The maximum amount of light reflected

from the markers to trigger the sensors

#define THRESHOLD_OFFLINE 100

#define BOUNCE_TIME 250 // The time delay to prevent multiple readings

#define NO_DESTINATION -1 // The value for when a pod does not have a

specified destination

#define MAX_RANGE 20 // Maximum detection range (cm) at which the pod

will begin to slow

#define MIN_RANGE 10 // Distance (cm) at which the pod will perform a

active braking

#define MAX_DUTY 65 // Maximum allowable motor duty cycle

#define MIN_DUTY 60 // Minimum duty cycle for motion

#define BRAKE 1 // State tracker for active braking

#define BRAKE_TIME 1000 // The timer that determines when the motors go

from active braking to coasting

#define STATION_1 0

198

#define STATION_2 2

#define STATION_3 6

// SPI Variables:

int buf [5];

volatile byte pos;

volatile boolean process_it;

// Navigation variables:

int readingOffline, readingOnline; // Stores the reflective object sensor

readings

int sensorOnlineNew, sensorOnlineStored, sensorOfflineNew,

sensorOfflineStored; // Sensor state tracking variables

unsigned long timerOnline, timerOffline; // Timers to prevent marker

bouncing

int destination;

int locationNode, locationTick, locationLine; // locationNode tracks the

section of track

 // locationTick tracks the

marker readings

 // locationLine tracks whether

the pod is Online or Offline

int locationNodePrevious;

// Object Detection Variables:

NewPing sonar(TRIG, ECHO, MAX_RANGE);

int range;

// Speed Control Variables:

int dutyCycle;

int activeBrake;

unsigned long timerBrake;

void setup()

{

 // Setup pin modes:

 pinMode(TRACK_ONLINE, INPUT);

 pinMode(TRACK_OFFLINE, INPUT);

 pinMode(SWITCH_ONLINE, OUTPUT);

 digitalWrite(SWITCH_ONLINE, LOW);

 pinMode(SWITCH_OFFLINE, OUTPUT);

 digitalWrite(SWITCH_OFFLINE, LOW);

 // Initialize the Serial Monitor

 Serial.begin(9600);

 // Initialize variables:

 locationNode = START_NODE;

 locationTick = START_TICK;

 locationLine = START_LINE;

 destination = destinationWrite(START_DESTINATION);

 range = 0; // No objects detected

 activeBrake = 0; // Turn off the brake

 // SPI related initialization:

 pinMode(MISO, OUTPUT);

 // turn on SPI in slave mode

 SPCR |= _BV(SPE);

 // get ready for an interrupt

 pos = 0; // buffer empty

 process_it = false;

199

 // now turn on interrupts

 SPI.attachInterrupt();

 printSnapshot();

 // **

 //delay(5000);

 // **

} // end setup

void loop()

{

 /*

 SPI COMMUNICATION

 */

 if (process_it)

 {

 if(-1 == destination)

 {

 switch(buf[0])

 {

 case 1:

 destination = destinationWrite(buf[1]);

 locationNode = destinationWrite(buf[2]);

 locationTick = 1;

 locationLine = 0;

 break;

 case 2:

 destination = destinationWrite(buf[1]);

 break;

 case 111:

 locationNode = buf[1];

 locationTick = buf[2];

 locationLine = buf[3];

 break;

 default:

 break;

 } // end buf[0] switch

 printSnapshot();

 //pos = 0;

 }

 /*

 for(int i=0; i<(pos-1); i++)

 {

 Serial.print (buf[i]);

 Serial.print(" ");

 }

 */

 pos = 0;

 process_it = false;

 } // end of flag set

 /*

 NAVIGATION

 */

 // Take new sensor readings:

 readingOffline = analogRead(TRACK_OFFLINE);

 readingOnline = analogRead(TRACK_ONLINE);

200

 // Determine the new sensor states (1 = on marker, 0 = off marker)

 if(readingOnline < THRESHOLD_ONLINE)

 {

 sensorOnlineNew = 1;

 } else {

 sensorOnlineNew = 0;

 }

 if(readingOffline < THRESHOLD_OFFLINE)

 {

 sensorOfflineNew = 1;

 } else {

 sensorOfflineNew = 0;

 }

 // Compare and possibly reset the Stored values based off of the New

values.

 // Offline Update:

 if(sensorOfflineStored < sensorOfflineNew) // The leading edge condition

 {

 sensorOfflineStored = sensorOfflineNew;

 }

 else if(sensorOfflineStored > sensorOfflineNew) // The trailing edge

condition

 {

 sensorOfflineStored = sensorOfflineNew;

 if(millis() - timerOffline > BOUNCE_TIME) // This if state prevents

multiple readings

 {

 Serial.println("Offline: Trailing Edge");

 Serial.println("----------------------");

 // Increment the tick counter:

 switch(locationTick)

 {

 case 2:

 locationTick = 0;

 locationLine = 1;

 break;

 default:

 locationTick++;

 break;

 } // end locationTick update

 timerOffline = millis();

 // Manipulate the Switch:

 switch(locationTick)

 {

 case 1:

 switchWrite(2); // Turn the switch off

 if(OFFLINE == locationLine && locationNode == destination)

 {

 destination = -1; // Arrived at specified destination

 }

 break;

 case 2:

 if(ONLINE == locationLine) // The pod is exiting an Online

section of a junction

 {

 switchWrite(ONLINE); // Turn on the online switch

 }

201

 else if(OFFLINE == locationLine)

 {

 switchWrite(OFFLINE);

 }

 break;

 default:

 break;

 } // end locationTick switch

 printSnapshot();

 } // end bounce

 }

 // Online Update:

 if(sensorOnlineStored < sensorOnlineNew) // The leading edge condition

 {

 sensorOnlineStored = sensorOnlineNew;

 }

 else if(sensorOnlineStored > sensorOnlineNew) // The trailing edge

condition

 {

 sensorOnlineStored = sensorOnlineNew;

 if(millis() - timerOnline > BOUNCE_TIME) // This if statement prevents

multiple reads

 {

 Serial.println("Online: Trailing Edge");

 Serial.println("---------------------");

 // Increment the node counter:

 locationNodePrevious = locationNode;

 switch(locationNode)

 {

 case 4:

 if(STATION_3 != destination)

 {

 locationNode = 10;

 }

 else

 {

 locationNode++;

 }

 break;

 case 9:

 locationNode = 0;

 break;

 case 10:

 locationNode = 8;

 break;

 default:

 locationNode++;

 break;

 } // end locationNode update switch

 // Manipulate the switch:

 switch(locationNode)

 {

 case STATION_1: // approaching Station 1

 case STATION_2: // approaching Station 2

 case STATION_3: // approaching Station 3

 if(locationNode == destination) // At the destination node

 {

202

 locationLine = 0; // Taking the Offline route

 switchWrite(OFFLINE);

 } else { // Not the destination node

 locationLine = 1; // Stays on the Online

section

 switchWrite(ONLINE);

 }

 break;

 case 4: // Approaching the bypass junction

 if(STATION_3 != destination) // If Station 3 (node 5) is not the

destination...

 { // Use the Mainline switch

 switchWrite(ONLINE); // Turn on the Online switch

 }

 else // Use the Offline switch

 {

 switchWrite(OFFLINE); // Turn on the Offline switch first

 }

 break;

 case 8:

 if(10 == locationNodePrevious)

 {

 switchWrite(ONLINE);

 }

 else

 {

 switchWrite(OFFLINE);

 }

 break;

 default: // This case will appear everytime the pod is exiting a

junction

 switchWrite(2); // Turn off the switch

 locationTick = 0; // Reset the tick counter

 locationLine = 1;

 break;

 } // end locationNode switch

 printSnapshot();

 timerOffline = millis();

 }

 }

 // end Navigation

 /*

 OBJECT DETECTION

 */

 // end Object Detection

 /*

 SPEED CONTROL

 */

 // Update the motor duty cycle based on location and detected object range:

 if((0 < range) && (MIN_RANGE >= range)) // If the pod detects an object

within the critical range

 {

 digitalWrite(MOTOR_A1, HIGH); // Perform active braking (HIGH-HIGH)

 digitalWrite(MOTOR_A2, HIGH);

 dutyCycle = 0; // Set the duty cycle to 0

 }

203

 else if((MIN_RANGE < range) && (MAX_RANGE >= range))

 {

 dutyCycle = map(range, MIN_RANGE, MAX_RANGE, MIN_DUTY, MAX_DUTY); //

Adjust the speed based on the distance

 }

 else if(NO_DESTINATION == destination)

 {

 digitalWrite(MOTOR_A1, HIGH); // Perform active braking (HIGH-HIGH)

 digitalWrite(MOTOR_A2, HIGH);

 dutyCycle = 0; // Set the duty cycle to 0

 }

 else

 {

 dutyCycle = MAX_DUTY;

 }

 if(MAX_DUTY < dutyCycle) // Safety precaution in case the duty cycle

somehow becomes higher than the maximum duty cycle

 {

 dutyCycle = MAX_DUTY;

 }

 // Run the motors at the adjusted duty cycle:

 analogWrite(MOTOR_A1, dutyCycle);

 digitalWrite(MOTOR_A2, LOW);

 // end Speed Control

} // end loop

void printSnapshot()

{

 Serial.print("Destination: ");

 Serial.println(destination);

 Serial.print("Location: ");

 Serial.print(locationNode);

 Serial.print(" (from ");

 Serial.print(locationNodePrevious);

 Serial.println(")");

 Serial.print("Tick: ");

 Serial.println(locationTick);

 Serial.print("Line: ");

 Serial.println(locationLine);

 Serial.print("Switch: ");

 if(digitalRead(SWITCH_ONLINE) == HIGH && digitalRead(SWITCH_OFFLINE) ==

LOW)

 {

 Serial.println("Online");

 }

 else if(digitalRead(SWITCH_OFFLINE) == HIGH && digitalRead(SWITCH_ONLINE)

== LOW)

 {

 Serial.println("Offline");

 }

 else if(digitalRead(SWITCH_OFFLINE) == LOW && digitalRead(SWITCH_ONLINE)

== LOW)

 {

 Serial.println("Off");

 }

204

 else {

 Serial.println("Error");

 }

 Serial.print("Range: ");

 Serial.println(range);

 Serial.print("Duty Cycle: ");

 Serial.println(dutyCycle);

 Serial.println("-----------------------------------");

}

int destinationWrite(int station_num) // Converts a station number to the

corresponding location node

{

 int node;

 switch(station_num)

 {

 case 1: // Station 1

 node = STATION_1;

 break;

 case 2:

 node = STATION_2; // Station 2

 break;

 case 3: // Station 3

 node = STATION_3;

 break;

 default:

 node = -1;

 break;

 } // end station_num switch

 return node;

} // end destinationWrite;

void switchWrite(int line)

{

 switch(line)

 {

 case ONLINE:

 digitalWrite(SWITCH_OFFLINE, LOW);

 digitalWrite(SWITCH_ONLINE, HIGH);

 break;

 case OFFLINE:

 digitalWrite(SWITCH_ONLINE, LOW);

 digitalWrite(SWITCH_OFFLINE, HIGH);

 break;

 default:

 digitalWrite(SWITCH_ONLINE, LOW);

 digitalWrite(SWITCH_OFFLINE, LOW);

 break;

 } // end line switch

} // end swtichWrite

// SPI interrupt routine

ISR (SPI_STC_vect)

{

byte c = SPDR; // grab byte from SPI Data Register

Serial.print("ISR\n");

 // add to buffer if room

205

 if (pos < sizeof buf)

 {

 buf [pos++] = c;

 // example: newline means time to process buffer

 if (c == 0x00)

 process_it = true;

 } // end of room available

} // end of interrupt routine SPI_STC_vect

206

Appendix T: Arduino Pod class
/*
 Pod.h - Library for controlling Spartan Superway 1/12 scale pods
 Created by Cory Ostermann (Lead), Man Ho, Randall Morioka, and Anthony Vo
 Spartan Superway 2013-2014 Controls Team
*/

#ifndef Pod_h
#define Pod_h

#include "Arduino.h"

class Pod
{
 public:
 Pod(int identifier);
 //void initialize(); // Sets up intial pod state, including Depot
location and SPI settings
 void statusWrite(int status_num);
 int statusRead();
 int destinationRead(); // Returns the pods current destination
 void destinationWrite(int station_id); // Sets the pods next destination
 int locationRead(); // Returns the pods current location
 void locationUpdate(); // Increments the pod's location as it reads tick marks
 //boolean ReflectiveSensor(int sensor, int edge);
 void switchWrite(int line); // Manipulates the switching mechanism
 int DetectObject(); // Senses if an object is obstructing the path
(Ultrasonic)
 int speedReadPWM(); // Returns the speed of the pod as a PWM duty
cycle
 void speedWritePWM(int duty_cycle); // Sets the speed of the of the pod using
a duty cycle
 void Cruise();
 private:
 /*
 Pod Characteristics
 */
 int _podID; // An identifying number that the Network can use to
coordinate pods
 int _podStatus; // Pod status: ready for instruction or not ready
 int _dutyCycle; // The PWM duty cycle being applied to the motors
 int _locationNode; // The most recent node passed by the pod
 int _locationLine; // Mainline or Offline
 int _locationAlt; // For deactivating the switch and slowing the pod
 int _destination; // The next station the pod will stop at
 int _range; // The range to the detected object (0 if no object
detected)
 int _stateTrack1New; // Tracks the state of the location Node sensor
(true means HIGH)
 int _stateTrack1Prev; // The previous state of the sensor
 int _stateTrack2New; // Tracks the state of the location Alt sensor
(true means HIGH)
 int _stateTrack2Prev; // The previous state of the sensor

 /*
 State Trackers:

207

 State trackers will be boolean variables to determine if systems are currently
active
 (i.e. a track switch is on/true or off/false)
 */
 boolean _stateSwitchMainline; // Tracks if the Mainline switch solenoid
is active (true)
 boolean _stateSwitchOffline; // Tracks if the Offline switch solenoid
is active (true)
 /*
 Time Trackers:
 Time trackers are unsigned long variables used in conjunction with the millis()
command
 in order to produce non-blocking code

 NOTE: Unless agreed upon by all team members, delay() should never be used.
 */

};

#endif

/*
 Pod.cpp - Library for controlling Spartan Superway 1/12 scale Maker Faire exhibition
pods
 Created by Cory Ostermann (Controls Team Lead), Man Ho, Randall Morioka, Eriberto
Velazquez, and Anthony Vo
 Spartan Superway 2013-2014 Controls Team
*/

// Arduino Pins
#define MOTOR_A1 3 // The M1 pin for the motor driver
#define MOTOR_A2 2
//#define MOTOR_B1 5 // The M2 pin for the motor driver
//#define MOTOR_B2 4
#define SOLENOID_MAINLINE 4 // The pin to manipulate the transistor attached to the
Mainline switch solenoid (left)
#define SOLENOID_OFFLINE 5 // The pin to manipulate the transistor attached to the
Offline switch solenoid (right)
//#define M2_ENCODERA
//#define M2_ENCODERB
#define TRIG 6
#define ECHO 7
#define TRACK_SENSOR1 A1
#define TRACK_SENSOR2 A0
#define SPI_INTERRUPT 9

// Additonal Properties
#define WHEEL_DIAMETER 1.875 // The diameter of the bogie wheels in inches
#define MAX_DUTY 75 // The maximum allowable duty cycle (normal
cruise speed)
#define MIN_DUTY 60 // The minimum duty cycle the pod will travel at
before stopping completely
#define HALF_DUTY 60 // The duty cycle for entering or leaving a
station
#define MAX_DISTANCE 50 // The limit when the pod will reduce speed to account
for detected objects (TBD)
#define MIN_DISTANCE 25 // The limit when the pod will apply the Emergency
Brake (i.e. stop the motors) (TBD)

208

#define MAINLINE 1
#define OFFLINE 0
#define READY 1
#define NOT_READY 0
#define THRESHOLD 30 // Threshold for the reflective sensors
#define LEADING_EDGE 1 // Leading Edge of the track marker
#define TRAILING_EDGE 0 // Trailing Edge of the track marker

#include "Arduino.h"
#include "Pod.h"
//#include "SPI.h"
//#include "SD.h" // The Adadfruit library for using an SD card for data-
logging
//#include "RTClib.h" // The Adafruit library for using a real-time clock to
timestamp data in data-logging
#include "NewPing.h"

Pod::Pod(int identifier)
{
 _podID = identifier; // Give the pod it's identifier
 _podStatus = READY; // Set the pod's initial state
 _locationNode = 0; // Set the initial location at the Depot
 _locationLine = OFFLINE;
 _locationAlt = 2;
 _range = 0;
 _stateTrack1Prev = LOW;
 _stateTrack2Prev = LOW;

 /*
 Setup the pins for actuators and sensors
 */
 // Motors
 pinMode(MOTOR_A1, OUTPUT);
 digitalWrite(MOTOR_A1, LOW);
 pinMode(MOTOR_A2, OUTPUT);
 digitalWrite(MOTOR_A2, LOW);
 //pinMode(MOTOR_B1, OUTPUT);
 //digitalWrite(MOTOR_B1, LOW);
 //pinMode(MOTOR_B2, OUTPUT);
 //digitalWrite(MOTOR_B2, LOW);
 // Solenoids
 pinMode(SOLENOID_MAINLINE, OUTPUT);
 digitalWrite(SOLENOID_MAINLINE, LOW);
 pinMode(SOLENOID_OFFLINE, OUTPUT);
 digitalWrite(SOLENOID_OFFLINE, LOW);
 // Motor Encoders
 //pinMode(M1_ENCODERA, INPUT);
 //pinMode(M1_ENCODERB, INPUT);
 //pinMode(M2_ENCODERA, INPUT);
 //pinMode(M2_ENCODERB, INPUT);
 // Ultrasonic Sensor
 pinMode(TRIG, OUTPUT);
 pinMode(ECHO, INPUT);
 // Track Sensor(s)
 pinMode(TRACK_SENSOR1, INPUT);
 pinMode(TRACK_SENSOR2, INPUT);

}

209

void Pod::statusWrite(int status_num)
{
 _podStatus = status_num;
}

int Pod::statusRead()
{
 return _podStatus;
}

int Pod::destinationRead() // Returns the pods current destination (node)
{
 return _destination;
}

void Pod::destinationWrite(int station_id) // Sets the pods next destination (node)
{
 switch (station_id)
 {
 case 1:
 _destination = 0;
 break;
 case 2:
 _destination = 2;
 break;
 case 3:
 _destination = 5;
 break;
 default:
 break;
 }
}

int Pod::locationRead() // Returns the pods current location
{
 return _locationNode;
}

void Pod::locationUpdate() // Increments the pod's location as it reads tick marks
{
 // Get readings from the Track Sensors
 int readingSensor1 = analogRead(TRACK_SENSOR1);
 int readingSensor2 = analogRead(TRACK_SENSOR2);
 // Update the previous sensor states
 _stateTrack1Prev = _stateTrack1New;
 _stateTrack2Prev = _stateTrack2New;
 // Update the new sensor states based on the sensor readings
 if(readingSensor1 > THRESHOLD)
 {
 _stateTrack1New = HIGH;
 } else {
 _stateTrack1New = LOW;
 }
 if(readingSensor2 > THRESHOLD)
 {
 _stateTrack2New = HIGH;
 } else {

210

 _stateTrack2New = LOW;
 }

 if((_stateTrack1New == LOW) && (_stateTrack1Prev == HIGH)) // The Primary Track
Sensor is triggered
 {
 // Increment the location Node to the next section
 if(_locationNode == 7)
 {
 _locationNode = 0;
 }
 else
 {
 _locationNode++;
 }
 // And the pod is about to enter junction
 if(_locationNode == (_destination)) // If the next sector is
the destination node
 {
 switchWrite(OFFLINE); // Switch to
the Offline segment
 _locationLine = OFFLINE; // Set location to
Offline
 }
 else if(_locationNode != (_destination)) // If the next sector is
not the destination
 {
 switchWrite(MAINLINE); // Activate
the switch for the Mainline
 _locationLine = MAINLINE;
 }
 else if(_locationLine == OFFLINE) // If the pod is entering the
Mainline from Offline
 {
 _locationLine = MAINLINE; // Set the line to Mainline
 switchWrite(2); // Turn off the switch
solenoids
 }
 else if(_locationLine == MAINLINE) // If the pod is exiting the Mainline
section of a section with a station
 {
 switch (_locationNode)
 {
 case 0:
 case 2:
 case 5:
 switchWrite(2); // Turn off the solenoid
 break;
 default:
 break;
 } // end switch
 } // end if
 } // end Primary sensor check
 if((_stateTrack2New == LOW) && (_stateTrack2Prev == HIGH)) // The Secondary
Track Sensor is triggered
 {
 if(_locationLine == MAINLINE) // If on the Mainline
 {

211

 switchWrite(MAINLINE); // Toggle the switching
mechanism
 }
 if(_locationLine == OFFLINE) // If Offline...
 {
 switch (_locationAlt)
 {
 case 0:
 switchWrite(OFFLINE); // Toggle the
switching mechanism
 _locationAlt = 1;
 break;
 case 1:
 if(_locationNode == _destination)
 {
 _locationAlt = 2;
 break;
 } else {
 switchWrite(OFFLINE); // Toggle the
switching mechanism
 _locationAlt = 0;
 break;
 }
 case 2:
 _podStatus = NOT_READY;
 break;
 } // end switch
 } // end OFFLINE if
 } // end Secondary Sensor check
} // end locationUpdate
/*
boolean Pod::ReflectiveSensor(int sensor, int edge) // COULD NOT GET TO WORK
{
 static int reading, newVal, prevVal; // Stores Reflective Object
Sensor reading
 //boolean result; // Stores the result to be returned
 // Get relevant sensor data
 switch(sensor)
 {
 case 1: // Primary track sensor
 reading = analogRead(TRACK_SENSOR1);
 prevVal = _stateTrack1Prev;
 break;
 case 2: // Secondary track sensor
 reading = analogRead(TRACK_SENSOR2);
 prevVal = _stateTrack1Prev;
 break;
 default:
 break;
 } // end sensor switch
 if (reading > THRESHOLD) // The Reflective Object Sensor reads the felt markers
 {
 newVal = LOW;
 } else {
 newVal = HIGH;
 }
 // Update the new state variables:
 switch(sensor)

212

 {
 case 1:
 _stateTrack1New = newVal;
 break;
 case 2:
 _stateTrack2New = newVal;
 break;
 default:
 break;
 } // end sensor switch
 if(newVal == LOW && prevVal == HIGH) // Triggering on the leading edge
 {
 prevVal = LOW;
 switch(sensor)
 {
 case 1:
 _stateTrack1Prev = prevVal;
 break;
 case 2:
 _stateTrack2Prev = prevVal;
 break;
 default:
 break;
 } // end sensor switch
 if(edge == LEADING_EDGE) // The leading edge was specified
 {
 return true;
 } else {
 return false;
 }
 }
 else if (newVal == HIGH && prevVal == LOW) // Triggering on the trailing edge
 {
 prevVal = HIGH;
 switch(sensor)
 {
 case 1:
 _stateTrack1Prev = prevVal;
 break;
 case 2:
 _stateTrack2Prev = prevVal;
 break;
 default:
 break;
 } // end sensor switch
 if(edge = TRAILING_EDGE) // The trailing edge was specified
 {
 result = true;
 } else {
 result = false;
 }
 }
 else
 {
 result = false;
 }
 return result;

213

} // end ReflectiveSensor
*/

void Pod::switchWrite(int line)
{
 if(line == MAINLINE && SOLENOID_MAINLINE == LOW)
 {
 digitalWrite(SOLENOID_OFFLINE, LOW);
 _stateSwitchOffline = false;
 digitalWrite(SOLENOID_MAINLINE, HIGH);
 _stateSwitchMainline = true;
 }
 else if(line == MAINLINE && SOLENOID_MAINLINE == HIGH)
 {
 switchWrite(2); // Turn off both solenoid
 }
 else if(line == OFFLINE)
 {
 digitalWrite(SOLENOID_MAINLINE, LOW);
 _stateSwitchMainline = false;
 digitalWrite(SOLENOID_OFFLINE, HIGH);
 _stateSwitchOffline = true;
 }
 else if(line == OFFLINE && SOLENOID_OFFLINE == HIGH)
 {
 switchWrite(2); // Turn off both solenoid
 }
 else
 {
 digitalWrite(SOLENOID_OFFLINE, LOW);
 _stateSwitchOffline = false;
 digitalWrite(SOLENOID_MAINLINE, LOW);
 _stateSwitchMainline = false;
 }
}

int Pod::DetectObject() // Use the Ultrasonic Sensor make sure there are no
obstructions
{
 NewPing sonar(TRIG, ECHO, MAX_DISTANCE);
 _range = sonar.ping_cm();
 return _range; // If no objects are detected, return 0;
}

int Pod::speedReadPWM()
{
 return _dutyCycle;
}

void Pod::speedWritePWM(int duty_cycle)
{
 _dutyCycle = duty_cycle;
}

void Pod::Cruise()
{
 if ((_range != 0) && (_range < MIN_DISTANCE)) // if the pod is within critical
range

214

 {
 // Activate the "emergency brakes" (i.e. stop motors)
 digitalWrite(MOTOR_A1, HIGH);
 digitalWrite(MOTOR_A2, HIGH);
 //digitalWrite(MOTOR_B1, HIGH);
 //digitalWrite(MOTOR_B2, HIGH);
 _dutyCycle = 0; // set the duty cycle to
zero
 }
 else if ((_locationAlt == 2) && (_podStatus != READY)) // if the pod
arriving/sitting at a station
 {
 // Stop the motors
 digitalWrite(MOTOR_A1, HIGH);
 digitalWrite(MOTOR_A2, HIGH);
 //digitalWrite(MOTOR_B1, HIGH);
 //digitalWrite(MOTOR_B2, HIGH);
 _dutyCycle = 0; // set the duty cycle to
zero
 }
 else if ((_range >= MIN_DISTANCE) && (_range <= MAX_DISTANCE)) // If the pod
detects an object
 {
 _dutyCycle = map(_range, MIN_DISTANCE, MAX_DISTANCE, MIN_DUTY, MAX_DUTY);
 // Reduce speed based on the distance to the object
 }
 else if (_locationAlt == 1) // If the pod is entering the Offline segment of
track
 {
 _dutyCycle = HALF_DUTY; // Reduce duty cycle by half
 }
 else if ((_range == 0) && (_locationAlt == 0)) // If the pod is leaving the
Offline segment
 {
 _dutyCycle = MAX_DUTY; // Increase duty cycle to merge onto the
Mainline
 }
 // Manipulate the motors according to the current duty cycle
 analogWrite(MOTOR_A1, _dutyCycle);
 //analogWrite(MOTOR_B2, _dutyCycle);
 digitalWrite(MOTOR_A2, LOW);
 //digitalWrite(MOTOR_B1, LOW);

}

215

Appendix U: Arduino SPI Sketch
#include <SPI.h>

int buf [3];

volatile byte pos;

volatile boolean process_it;

int gasPedal = 0;

unsigned long timerStop;

void setup (void)

{

 pinMode(3, OUTPUT);

 digitalWrite(3, LOW);

 pinMode(2, OUTPUT);

 digitalWrite(2, LOW);

 Serial.begin (9600); // debugging

 // have to send on master in, *slave out*

 pinMode(MISO, OUTPUT);

 // turn on SPI in slave mode

 SPCR |= _BV(SPE);

 // get ready for an interrupt

 pos = 0; // buffer empty

 process_it = false;

 // now turn on interrupts

 SPI.attachInterrupt();

} // end of setup

// SPI interrupt routine

ISR (SPI_STC_vect)

{

byte c = SPDR; // grab byte from SPI Data Register

Serial.print("ISR\n");

 // add to buffer if room

 if (pos < sizeof buf)

 {

 buf [pos++] = c;

 // example: newline means time to process buffer

 if (c == 0x00)

 process_it = true;

 } // end of room available

} // end of interrupt routine SPI_STC_vect

// main loop - wait for flag set in interrupt routine

void loop (void)

{

 if (process_it)

 {

216

 gasPedal = buf[0];

 Serial.println(gasPedal);

 timerStop = millis();

 /*

 for(int i=0; i<(pos-1); i++)

 {

 Serial.print (buf[i]);

 Serial.print(" ");

 }

 */

 pos = 0;

 process_it = false;

 } // end of flag set

 if(gasPedal)

 {

 //Serial.println("Gas pedal is true!");

 analogWrite(3, 70);

 //digitalWrite(3, HIGH);

 }

 if(!gasPedal)

 {

 digitalWrite(3, LOW);

 }

// Serial.print("HI\n");

} // end of loop

217

Appendix V: 1/12-Scale Part Drawings

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

Appendix W: Bill of Materials
Microcontrollers Quantity Distributor Unit Price Total

SJOne 1 SJSU CMPE $80.00 $80.00

Arduino Uno 1 Jameco $27.95 $27.95

Proto-Shield 1 Jameco $6.95 $6.95

Actuators & Accessories

30:1 Micro Metal Gearmotor HP with Extended Motor Shaft 2 Pololu $16.95 $33.90

Micro Metal Gearmotor Bracket Pair 1 Pololu $4.99 $4.99

Motor Drivier Carrier 1 Pololu $4.95 $4.95

5V solenoid 2 Sparkfun $4.95 $9.90

JST Vertical Connector 2 Sparkfun $0.95 $1.90

TIP102 Transistor 2 Jameco $0.45 $0.90

1N4004 Diode 2 Jameco $0.05 $0.10

Sensors

Optical Encoder Pair Kit (5V) 1 Pololu $8.95 $8.95

Reflective Phototransistor 2 Jameco $4.95 $9.90

Ultrasonic Sensor 1 Amazon $12.00 $12.00

Hardware

1-7/8" Wheels 4 BaneBots $2.50 $10.00

3mm Shaft Wheel Hubs 4 BaneBots $4.00 $16.00

608 Bearings 8 Amazon $1.50 $12.00

1/8" Acrylic Sheet 17" x 22" TAP Plastics $10.00 $10

237

Laser-Cut Components (from 1/8" Acrylic Sheet) Quantity
Drawing
Number

Chassis Base 1 001

Battery Plate 2 002

Link Joint 4 003

Chassis Link 8 004

PCB Mount 1 005

SJOne Plate 1 006

Arduino Plate 1 007

Chassis Top 1 008

Sensor Plate 2 009

Main Stem 1 010

Stem Support 2 011

Bogie Base 1 012

Bearing Plate 4 013

Bogie Side 2 014

Bogie Top 1 015

Switch Joint 4 016

Switch Arm 2 017

Switch Lock 2 018

238

Appendix X: SunPower Data Sheet

239

240

Appendix Y: Enphase M250 Microinverter Data Sheet

241

242

Appendix Z: Aluminum 6063-T5 Data Sheet

243

Appendix AA: Solar – Cold Rolled Steel Column Mount

244

Appendix AB: Solar – Guideway Mount

245

Appendix AC: Solar Frame Assembly Drawing

246

Appendix AD: Solar Team Bill of Materials

Part Unit Price Qty Cost Details

Combiner Box $150.00 1 $150.00
MNPV6 Combiner Box
Product #: 8910041

Grid Tie Inverter $200.00 1 $200.00

Enphase M250 - Micro Inverter, 208/240 VAC for
MC4
Product #: 2930488

Sunpower T5 327W
Panel $0.00 1 $0.00 Unisolar 128 Watt Flexible Solar Panel PV Laminate

Framer Material $500.00 1 $500.00 6063 T-6 Aluminum Frame and Tower Mounts

Wiring $300.00 1 $300.00 12 Gauge Primary Wire by Del City

