The Super Way: a PRT System

Preliminary Feasibility Analysis

SMSSV: Business Super Team
Christian Jorgensen & Stephanie Tucker
Alden StarCar: 1970’s

It’s been a journey...
78.5% of people use a car as their main mode of transportation.

Question:
“What mode [of transportation] do you presently use for most of your trip?”

Responses

- Walk
- Car
- No Response
- Other
- Shared Taxi
- Taxi
- Motorcycle
- Bicycle

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

11/16/12
Dr. Basu's Bus 181: SuperTeam with COE ME 195

[Transit Survey 2012]
59% of those travelers would **NOT** be willing to walk more than **5 MINUTES** to a transit stop.

Question:
“Pick the longest walking time acceptable to you at each end of the trip.”

Responses

- **No Response**
- **5 Minutes**
- **15 Minutes**
- **30 Minutes**
- **60 Minutes**

11/16/12
Dr. Basu's Bus 181: SuperTeam with COE ME 195

[Transit Survey 2012]
59% of those travelers said that they would need to **ALWAYS** get a seat to use transit

Question:
“Would you always need to get a seat?”

Responses

<table>
<thead>
<tr>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Always</td>
<td>40</td>
</tr>
<tr>
<td>Always</td>
<td>60</td>
</tr>
</tbody>
</table>
TRUE FUEL COSTS:
- $15.14 per gallon
- Accounts for:
 - Oil industry tax break
 - Corporate welfare handouts
 - Military action (Iraq)

INFRASTRUCTURE FOR CARS:
- Air and Water Pollution
- Societal Cost of Congestion
 - Stress
 - Illness
 - Time
 - Loss of opportunity
- Roads
- Parking

Source: The Progress Report

Source: www.treehugger.com

11/16/12
Dr. Basu's Bus 181: SuperTeam with COE ME 195
What Commuters want:

Want a car substitute, not a bus substitute!
Research
Customers vs. End Users
SWOT Analysis #1

OPPORTUNITIES

- First-Mover Advantage
- Move from Fossil Fuels
 - Increase in fuel cost
 - Progressive increase in ridership
- Global Standards
- Early Adopters
- Connecting to Existing Infrastructure
- Job Creation

THREATS

- Barriers to Entry:
 - Standardized Technology
 - Securing Funding
- Local & Regional Zoning
- Consumer Acceptance
- Competitor’s Opposition
STRENGTHS

- Safety
- Scalability
- Modularity
- Renewable Energy
- Reduce Traffic Congestion
- Operating Costs

WEAKNESSES

- Land-Use Challenges
- Significant Infrastructure
- Behavioral Changes
- 1st mile/Last Mile
- Gap in Funding
Define the actual costs of current systems of transportation and find better solutions.
Estimated Construction Costs per Mile

<table>
<thead>
<tr>
<th></th>
<th>SuperWay Podcar - Unidirectional</th>
<th>SuperWay Podcar - Bidirectional</th>
<th>ULTRA system</th>
<th>Vectus</th>
<th>Taxi 2000 SkyWeb Express</th>
<th>HiGH SPEED TRAIN</th>
<th>BART</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per Mile</td>
<td>$9 Million</td>
<td>$13.7 Million</td>
<td>$9 Million to 15 Million</td>
<td>$18 Million</td>
<td>$16 Million to $24 Million</td>
<td>$80.5 Million to $161 Million</td>
<td>$241 Million</td>
</tr>
</tbody>
</table>
Estimated Startup Costs

<table>
<thead>
<tr>
<th></th>
<th>Airport System</th>
<th>Local Regional System</th>
<th>Wider Regional System</th>
<th>State-wide</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Miles</td>
<td>Low: 6.5 Miles</td>
<td>Med: 60 Miles</td>
<td>High: 120 Miles</td>
<td>Low: 436 Miles</td>
</tr>
<tr>
<td>Est. Total Cost</td>
<td>Low: $58.5 M</td>
<td>Med: $89 M</td>
<td>High: $162.5 M</td>
<td>Low: $3B</td>
</tr>
</tbody>
</table>

	Low: $9M	Med: $13.7 M	High: $25M	Low: $9M
	Low: $540 M	Med: $840 M	High: $1.5B	Low: $3B
	Low: $1.08B	Med: $1.64B	High: $3B	Low: $3.92B
	Low: $1.5B	Med: $3B	High: $5.97B	Low: $10.9B

11/16/12
Dr. Basu's Bus 181: SuperTeam with COE ME 195
System Design Options

PRIMARY CORRIDOR GRID MATRIX
Need a **Hardware Reference Platform (HRP)**
Unkowns #1

- 1st time implementation of technologies
 - Propulsion
 - Switching
 - Software
 - Car Design
 - Station Design
 - Power Sources
 - Other
Unknowns #2

1st time implementation of building and deploying:

- Manufacturing Issues
- Regulations
- Public Reaction
- Availability of Funding
- Viable Business Model
- System Safety
- System Reliability
- Natural Disasters
- Manmade Disasters
- Other
Will consumers be willing to switch?

- Cost
- Comfort
- Safety
- Convenience
- Availability
- Speed
- Reliability
- Flexibility
- First Mile, Last Mile
- Other
Mode of Transportation

<table>
<thead>
<tr>
<th></th>
<th>PRT</th>
<th>Car</th>
<th>Automated Cars</th>
<th>Bus</th>
<th>Train</th>
<th>Light Rail</th>
<th>Electric Scooter</th>
<th>Bicycle</th>
<th>Walk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-to-Point</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>E?</td>
<td>E?</td>
<td>E?</td>
</tr>
<tr>
<td>Wait-time</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>E?</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Travel-Time</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Private</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>E?</td>
<td>E?</td>
</tr>
<tr>
<td>Comfortable</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D?</td>
</tr>
<tr>
<td>Clean</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Safe</td>
<td>A</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>E?</td>
<td>E?</td>
</tr>
<tr>
<td>Automated</td>
<td>A</td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Transportation of Goods</td>
<td>E</td>
<td>A</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Low Cost to End User</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cost of Implementation to Customer</td>
<td>E</td>
<td>E?</td>
<td>E?</td>
<td>E?</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Environmental Consciousness</td>
<td>A</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Key:
- A = Advantage
- D = Disadvantage
- E = Even

11/16/12
Dr. Basu's Bus 181: SuperTeam with COE ME 195
Fall 2012 Goals

- Define Product/Service, Customer & Market
- Identify Differentiators & Market Position
- Perform Feasibility Analyses
- Preliminary Financial Projections & Analyses
- Propose & Evaluate Business Cases

11/16/12
Spring 2013 Goals

<table>
<thead>
<tr>
<th>Business Case(s)</th>
<th>Financial Plan</th>
<th>Marketing Plan</th>
<th>Business Model</th>
<th>Business Plan</th>
</tr>
</thead>
</table>

11/16/12

Dr. Basu's Bus 181: SuperTeam with COE ME 195
Pull from feasibility document
First-mover advantage
Move from fossil fuels
Safety
Congestion
Consumer Expectations
Zoning & Acceptance
Scalability
Modularity
Global standardization
Land-use
Funding Models
Likely early adopters
Integration into existing Infrastructure
Management Team

- Dr. Burford Furman
- Students

- Advisors and Mentors
 - Ron Swenson
 - Dr. Basu
 - Dr. Musgrave
 - Professor Andra
Questions?....Thank you!