

The Super Way: a PRT System

Preliminary Feasibility Analysis

SMSSV: Business Super Team Christian Jorgensen & Stephanie Tucker

It's been a journey...

Alden StarCar: 1970's

78.5% of people use a car as their main mode of transportation.

Question:

"What mode [of transportation] do you presently use for most of your trip?"

59% of those travelers would **NOT** be willing to walk more than **5 MINUTES** to a transit stop.

Question:

"Pick the longest walking time acceptable to you at each end of the trip."

11/16/12

59% of those travelers said that they would need to ALWAYS get a seat to use transit

Question:

"Would you always need to get a seat?"

True Expense of sustaining car use in US

TRUE FUEL COSTS:

- \$15.14 per gallon
- Accounts for:
 - Oil industry tax break
 - Corporate welfare handouts
 - Military action (Iraq)

INFRASTRUCTURE FOR CARS:

- Air and Water Pollution
- Societal Cost of Congestion
 - Stress
 - Illness
 - Time
 - Loss of opportunity
- Roads
- Parking

Source: The Progress Report

Source: www.treehugger.com

What Commuters want:

Want a car substitute, not a bus substitute!

Dr. Basu's Bus 181: SuperTeam with COE ME 195

Research

Customers vs. End Users

SWOT Analysis #1

OPPORTUNITIES

- First-Mover Advantage
- Move from Fossil Fuels
 - Increase in fuel cost
 - Progressive increase in ridership
- Global Standards
- Early Adopters
- Connecting to Existing Infrastructure
- Job Creation

THREATS

- Barriers to Entry:
 - Standardized Technology
 - Securing Funding
- Local & Regional Zoning
- Consumer Acceptance
- Competitor's Opposition

SWOT Analysis #2

STRENGTHS

- Safety
- Scalability
- Modularity
- Renewable Energy
- Reduce Traffic Congestion
- Operating Costs

WEAKNESSES

- Land-Use Challenges
- Significant Infrastructure
- Behavioral Changes
- 1st mile/Last Mile
- Gap in Funding

Define the <u>actual</u> costs of current systems of transportation and find better solutions

Estimated Construction Costs per Mile

	SuperWay Podcar - Unidirectional	SuperWay Podcar - Bidirectional	ULTRa system	Vectus	Taxi 2000 SkyWeb Express	HIGH SPEED TRAIN	BART
Cost per Mile	\$9 Million		\$9 Million to 15 Million		\$16 Million to \$24 Million	\$80.5 Million to \$161 Million	\$241 Million

Estimated Startup costs

	Airport System		Local Regional System			Wider Regional System			State-wide			
	Low	Med	High	Low	Med	High	Low	Med	High	Low	Med	High
# of Miles	6.5 Miles			60 Miles			120 Miles			436 Miles		
Est. Cost/ Mile	\$9M	\$13.7 M	\$25M	\$9M	\$13.7 M	\$25M	\$9M	\$13.7 M	\$25M	\$9M	\$13.7 M	\$25M
Est. Total Cost	\$58.5 M	\$89 M	\$162. 5 M	\$540 M	\$840 M	\$1.5B	\$1.08 B	\$1.64 B	\$3B	\$3.92 B	\$5.97 B	\$10.9 B

Dr. Basu's Bus 181: SuperTeam with COE ME 195

System Design Options

PRIMARY CORRIDOR

GRID MATRIX

Known & Unknown Costs

Need a Hardware Reference Platform (HRP)

Unknowns #1

- 1st time implementation of technologies
 - Propulsion
 - Switching
 - Software
 - Car Design
 - Station Design
 - Power Sources
 - Other

Unknowns #2

1st time implementation of <u>building and deploying</u>:

- Manufacturing Issues
- Regulations
- Public Reaction
- Availability of Funding
- Viable Business Model

- System Safety
- System Reliability
- Natural Disasters
- Manmade Disasters
- Other

Will consumers be willing to switch?

- Cost
- Comfort
- Safety
- Convenience
- Availability
- Speed
- Reliability
- Flexibility
- First Mile, Last Mile
- Other

SuperWayCompetitors

	Mode of Transportation								
	PRT	Car	Automated Cars	Bus	Train	Light Rail	Electric Scooter Segway	Bicycle	Walk
Point-to-Point	Α	A	A	D	D	D	E?	E?	E?
Wait-time	Α	A	A	D	D	D	E?	Е	Е
Travel-Time	A	Е	Е	Е	Е	E	Е	D	D
Private	Α	Α	A	D	D	D	Е	E?	E?
Comfortable	Α	A	A	Е	Е	E	D	D?	D ?
Clean	A	A	A	D	D	D	Е	Е	Е
Safe	A	D	Е	Е	Е	Е	D	E?	E?
Automated	Α	Е	A	Е	Е	A	Е	Е	Е
Transportation of Goods	Е	A	A	Е	Е	E	D	D	D
Low Cost to End User	Е	D	D	Е	Е	Е	D	A	A
Cost of Implementation to Customer	E	E?	E?	E?	D	D	A	A	A
Environmental Consciousness	A	D	Е	Е	E	E	A	A	A
Key: A=Advantage D=Disadvantage E=Even									

Fall 2012 Goals

Spring 2013 Goals

Financial	Marketing	Business	Business
Plan	Plan	Model	Plan

with the mentation Timeline

Pull from feasibility document

CFFWYth Potential

- First-mover advantage
- Move from fossil fuels
- Safety
- Congestion
- Consumer Expectations
- Zoning & Acceptance
- Scalability
- Modularity
- Global standardization
- Land-use
- Funding Models
- Likely early adopters
- Integration into existing Infrastructure

Management Team

- Dr. Burford Furman
- Students
- Advisors and Mentors
 - Ron Swenson
 - Dr. Basu
 - Dr. Musgrave
 - Professor Andra

Questions?....Thank you!

11/16/12

Dr. Basu's Bus 181: SuperTeam with COE ME 195