Lateral Dynamics of the ITNS Vehicle

Contents		
Section	Subject	page
1	Introduction	,
2	Equations of Motion	2
3	The Orientation of the Vehicle with respect to the Guideway	3
4	Forces and Moments	5
5	Equations of the Center of the Curved Guideway.	6
6	Equations of the Outer Running Surfaces	8
7	Equations of the Switch Rail Running Surfaces	8
8	Equations of the Inner Running Surfaces	9
9	Tire Force-Deflection Relationship	11
10	Deflection of the Side Tires	11
11	Deflection of the Main Tires	15
12	A Limitation on the Tire Force-Deflection Relationship	16
13	Passenger motion	16
14	Motion of the LIM Bogie	17
15	Numerical Solution of the Equations of Motion	20
16	Results and Discussion	21
Table 1	Coordinates of Application Points of the Forces	6
Table 2	Results of Typical Simulation	22
Table 3	Some Results of Parameter Variations	23
Table 4	The Best Results	24
Fig. 1	The Geometry of a Guideway Diverge.	2
Fig. 2	The Geometry of a Tire Deflection	11
Fig. 3	The Running Surfaces	21
Fig. 4	Tire Forces and Acceleration while passing a diverge	22
Fig. 5	The Vehicle Dimensioned	27
A	The Equations of Motion in a Rotating Reference Frame	28
B	Force-Deflection Relationships for Tires	30
C	Energy Loss in a Tire	33
D	The Starting Point of the Diverge Guideways.	35
E	The Program	37
End		57

1. Introduction

The subject of this paper is the derivation of the equations that define the lateral motion of an ITNS vehicle, a sketch of which is shown in Figure 6. For this analysis, the vehicle passes through a diverge section of guideway. The solution for lateral motion of the vehicle permits us to determine the stiffness of the lateral tires required for acceptable ride comfort, the forces on
the wheels, and the required length of flared switch rails. Because there is little coupling between pitch motion and lateral motion and because in this analysis it is assumed that the running surfaces are smooth, we can treat three-dimensional lateral motion separately from threedimensional pitch motion. However, in Appendix G^{1}, we analyze the most severe pitch motion, which results in a pitch angle of about 0.2^{0} and 70% of the maximum weight on the rear wheels. The lateral degrees of freedom are yaw ψ, roll ϕ, and sidewise motion $y_{m c}$, i.e. the sidewise motion of the mass center of the vehicle. It will be assumed that the vehicle passes through the diverge section at constant speed V.

2. The Equations of Motion

Figure 1. The Geometry of a Guideway Diverge.
Figure 1 and Appendix A define a fixed reference system x, y, z in which x and y are assumed to be in a horizontal plane, and a reference system $x^{\prime}, y^{\prime}, z^{\prime}$ centered in the guideway but moving with the center of mass of the vehicle, with both x^{\prime} and y^{\prime} in the same horizontal plane. The x^{\prime} axis points in the local direction of the center line of the guideway, the y and y^{\prime} axes are horizontal and point to the left, and the z, z^{\prime} axis are vertical and points upward, giving three orthogonal axes consistent with the right-hand rule. The sidewise acceleration of the mass center of the vehicle (in the y^{\prime} direction) is equal to the sum of the sidewise forces divided by the mass of the vehicle. The yaw acceleration $\ddot{\psi}$ of the vehicle is the sum of the moments about the z^{\prime} axis at the mass center divided by the yaw moment of inertia of the vehicle about the z^{\prime} axis. Similarly the roll acceleration $\ddot{\phi}$ is the sum of the moments about the x^{\prime} axis divided by the roll moment of inertia of the vehicle about the x^{\prime} axis. Thus, from Appendix A, we have

$$
\begin{gathered}
\frac{W_{\text {vehicle }}}{g}\left(\ddot{y}_{m c}+\frac{V^{2}}{R}\right)=F_{u f r}+F_{u f l}+F_{u b r}+F_{u b l}+F_{l f r}+F_{l f l}+F_{l b r}+F_{l b l} \\
+F_{s f r}+F_{s f l}+F_{s b r}+F_{s b l}+F_{w i n d}
\end{gathered}
$$

[^0]in which $\ddot{y}_{m c}$ is the vehicle acceleration in the y^{\prime} direction, V is the constant vehicle speed, $\dot{\Psi}$ is time rate of change of the direction of the guideway, $W_{\text {vehicle }}$ is the weight of the vehicle, and g is the acceleration of gravity. The first eight forces shown in equation (2-1) are applied to the eight lateral support tires by the lateral running surfaces, the next four forces, designated by s as the first subscript, are the forces applied to the switch wheels by the switch rails, and the remaining force is applied to the cabin by a side wind. If a tire force would be calculated to be negative, it will be set to zero. Of the first eight forces, the first subscript u or l designates upper or lower side wheels. For the next four forces, the first subscript, s, designates a switch wheel. The second subscript f or b in all cases designates a front or back wheel. The third subscript r or l in all cases designates a right or left wheel.

The wind force is given by

$$
\begin{equation*}
F_{\text {wind }}=\frac{d_{\text {air }}}{2 g} V_{\text {wind }}^{2} C_{D} A \tag{2-2}
\end{equation*}
$$

in which $d_{\text {air }}=0.075 \mathrm{lb}$ weight $/ \mathrm{ft}^{3}, g=32.174 \mathrm{ft} / \mathrm{sec}^{2}, V_{\text {wind }}$ is the maximum wind speed in $\mathrm{ft} / \mathrm{sec}$, C_{D} is the dimensionless side drag coefficient, and A is the side area of the cabin in square feet, giving a wind force in pounds.

The two equations for the moments about the center of mass are

$$
\begin{equation*}
\frac{W_{\text {vehicle }}}{g} R_{\psi}^{2} \ddot{\psi}=\sum \text { Yaw moments, } \quad \frac{W_{\text {vehicle }}}{g} R_{\phi}^{2} \ddot{\phi}=\sum \text { Roll moments } \tag{2-3}
\end{equation*}
$$

in which R_{ψ}, R_{ϕ} are the radii of gyration of the vehicle about the z^{\prime} and x^{\prime} axes, respectively.

3. The Orientation of the Vehicle with respect to the Guideway.

In Appendix A we defined a reference frame $x^{\prime}, y^{\prime}, z^{\prime}$ with $x^{\prime}=0$ at and moving at constant speed V with the center of mass of the vehicle. This reference frame is centered in the guideway so that x^{\prime} is parallel to the guideway, $y^{\prime}=0$ at the center of the guideway and directed perpendicular to the guideway, positive to the left, and $z^{\prime}=0$ at the vertical position of the center of mass, positive upward. Because the position of the center of mass is only approximately known and will vary as the design proceeds, we establish a set of body axes x_{b}, y_{b}, z_{b} such that $x_{b}=0$ at the center of the rear axle of the rear main-support wheels, $y_{b}=0$ at the center of the chassis, and $\mathrm{z}_{\mathrm{b}}=0$ at the center of the rear axle of the main-support wheels. The x_{b} axis points along the length of the chassis, y_{b} is to the left, and z_{b} is vertically upward parallel to the vertical chassis. The lateral motion of the vehicle with respect to the reference frame $x^{\prime}, y^{\prime}, z^{\prime}$ will be described by the lateral deflection $y_{m c}$, a yaw angle ψ between the coordinates x_{b} and x^{\prime}, and a roll angle
ϕ between the coordinates z_{b} and z^{\prime}. Each of the angles is positive according to the right-hand rule. Thus the position of the mass center is $y_{m c} \hat{\jmath}^{\prime}$, its position in body coordinates is $X_{m c} \hat{\imath}_{b}+$ $Z_{m c} \hat{k}_{b}$, and the position of any point on the chassis in body coordinates is $x_{w} \hat{\imath}_{b}+y_{w} \hat{\jmath}_{b}+z_{w} \hat{k}_{b}$.

The x, y, z reference frame defined in Figure 1 and Appendix A is taken to be an inertial, i.e., fixed, reference frame. We need to know the position of any tire contact point in the vehicle in this fixed reference frame and the acceleration of the center of mass of the vehicle in the y^{\prime} direction. From Figure 1 the vector distance from the origin of the x, y, z reference frame to a point on the vehicle is

$$
\begin{equation*}
\vec{R}=\vec{R}_{0}+\vec{R}^{\prime}=x(s) \hat{\imath}+y(s) \hat{\jmath}+z(s) \hat{k}+y_{m c} \hat{\jmath}^{\prime}-X_{m c} \hat{\imath}_{b}-Z_{m c} \hat{k}_{b}+x_{w} \hat{\imath}_{b}+y_{w} \hat{\jmath}_{b}+z_{w} \hat{k}_{b} \tag{3-1}
\end{equation*}
$$

in which $x(s), y(s), z(s)$ are the coordinates of the origin of reference frame $x^{\prime}, y^{\prime}, z^{\prime}$ with respect to the fixed reference frame, $y_{m c}$ is the lateral displacement of the mass center from the center of the guideway, $X_{m c}, Z_{m c}$ are the coordinates of the mass center from the origin of the body coordinates, and x_{w}, y_{w}, z_{w} are the coordinates of the point of contact of an undeflected wheel contact point in body coordinates. We need to express all of these unit vectors in terms of the space-fixed unit vectors.

To do so, define the angle between the x and x^{\prime} axes as Ψ, with Ψ positive if the x^{\prime} axis has turned counterclockwise, as shown in Figure 1. Then, in matrix form, the angular orientation of the $x^{\prime}, y^{\prime}, z^{\prime}$ frame with respect to the x, y, z frame is

$$
\left|\begin{array}{l}
\hat{i}^{\prime} \tag{3-2}\\
\hat{j}^{\prime} \\
\hat{k}^{\prime}
\end{array}\right|=\left[\begin{array}{ccc}
C \Psi & S \Psi & 0 \\
-S \Psi & C \Psi & 0 \\
0 & 0 & 1
\end{array}\right]\left|\begin{array}{l}
\hat{\imath} \\
\hat{\jmath} \\
\hat{k}
\end{array}\right|
$$

in which $C \equiv \cos , S \equiv \sin$.

To reach the body axes, first define an intermediate set of axes x_{1}, y_{1}, z_{1}, which rotate about the vertical through the yaw angle ψ, which is positive for yaw to the left. In terms of the corresponding intermediate set of unit vectors $\hat{\imath}_{1}, \hat{\jmath}_{1}, \hat{k}_{1}$ the angular orientation of these unit vectors to the reference frame to the $x^{\prime}, y^{\prime}, z^{\prime}$ is

$$
\left|\begin{array}{l}
\hat{c}_{1} \\
\hat{\jmath}_{1} \\
\hat{k}_{1}
\end{array}\right|=\left[\begin{array}{ccc}
C \psi & S \psi & 0 \\
-S \psi & C \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left|\begin{array}{c}
\hat{c}^{\prime} \\
\hat{\jmath}^{\prime} \\
\hat{k}^{\prime}
\end{array}\right|
$$

Finally, rotate the $\hat{\imath}_{1}, \hat{\jmath}_{1}, \hat{k}_{1}$ unit vectors about the common $\hat{\imath}_{1}, \hat{\imath}_{b}$ axes to the right (positive with the right-hand rule) through the roll angle ϕ to reach the body axes. Thus

$$
\left|\begin{array}{l}
\hat{l}_{b} \\
\hat{\jmath}_{b} \\
\hat{k}_{b}
\end{array}\right|=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \phi & S \phi \\
0 & -S \phi & C \phi
\end{array}\right]\left|\begin{array}{l}
\hat{\imath}_{1} \\
\hat{\jmath}_{1} \\
\hat{k}_{1}
\end{array}\right|
$$

Then, by matrix multiplication,

$$
\left|\begin{array}{l}
\hat{l}_{b} \tag{3-3}\\
\hat{\jmath}_{b} \\
\hat{k}_{b}
\end{array}\right|=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \phi & S \phi \\
0 & -S \phi & C \phi
\end{array}\right]\left[\begin{array}{ccc}
C \psi & S \psi & 0 \\
-S \psi & C \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left|\begin{array}{l}
\hat{\imath}^{\prime} \\
\hat{\jmath}^{\prime} \\
\hat{k}^{\prime}
\end{array}\right|=\left[\begin{array}{ccc}
C \psi & S \psi & 0 \\
-S \psi C \phi & C \psi C \phi & S \phi \\
S \psi S \phi & -C \psi S \phi & C \phi
\end{array}\right]\left|\begin{array}{l}
\hat{\imath}^{\prime} \\
\hat{\jmath}^{\prime} \\
\hat{k}^{\prime}
\end{array}\right|
$$

Then, using well-known trigonometric identities,

$$
\begin{array}{r}
\left|\begin{array}{l}
\hat{l}_{b} \\
\hat{\jmath}_{b} \\
\hat{k}_{b}
\end{array}\right|=\left[\begin{array}{ccc}
C \psi & S \psi & 0 \\
-S \psi C \phi & C \psi C \phi & S \phi \\
S \psi S \phi & -C \psi S \phi & C \phi
\end{array}\right]\left[\begin{array}{ccc}
C \Psi & S \Psi & 0 \\
-S \Psi & C \Psi & 0 \\
0 & 0 & 1
\end{array}\right]\left|\begin{array}{l}
\hat{l} \\
\hat{\jmath} \\
\hat{k}
\end{array}\right| \\
=\left[\begin{array}{ccc}
C(\Psi+\psi) & S(\Psi+\psi) & 0 \\
-S(\Psi+\psi) C \phi & C(\Psi+\psi) C \phi & S \phi \\
S(\Psi+\psi) S \phi & -C(\Psi+\psi) S \phi & C \phi
\end{array}\right]\left|\begin{array}{l}
\widehat{\imath} \\
\hat{\jmath} \\
\hat{k}
\end{array}\right| \tag{3-4}
\end{array}
$$

From equations (3-1), (3-2) and (3-4) the x and y coordinates of a wheel-contact point are

$$
\begin{align*}
& x=x(s)-S \Psi \mathrm{y}_{\mathrm{mc}}+C(\Psi+\psi)\left(x_{w}-X_{m c}\right)-S(\Psi+\psi) C \phi y_{W}+S(\Psi+\psi) S \phi\left(z_{w}-Z_{m c}\right) \\
& y=y(s)+C \Psi \mathrm{y}_{\mathrm{mc}}+S(\Psi+\psi)\left(x_{w}-X_{m c}\right)+C(\Psi+\psi) C \phi y_{W}-C(\Psi+\psi) S \phi\left(z_{w}-Z_{m c}\right) \tag{3-5}
\end{align*}
$$

4. Moments and Body Coordinates

The positions of application of the tire forces with respect to the body axes are shown in Figure 6. The side-wheel forces on the right side are either positive or zero, and on left side either negative or zero. The switch-wheel forces on the right side are either negative or zero, and on left side either positive or zero. The moments are as follows:

$$
\begin{align*}
& \sum \text { Yaw Moments }=\left(F_{u f r}+F_{u f l}\right)\left(X_{u f}-X_{c g}\right)-\left(F_{u b r}+F_{u b l}\right)\left(X_{c g}\right) \\
& \qquad \begin{array}{l}
+\left(F_{l f r}+F_{l f l}\right)\left(X_{l f}-X_{c g}\right)-\left(F_{l b r}+F_{l b l}\right)\left(X_{c g}-X_{l b}\right) \\
\\
\quad-\left(F_{s f r}+F_{s f l}\right)\left(X_{s f}-X_{c g}\right)-\left(F_{s b r}+F_{s b l}\right)\left(X_{c g}-X_{s b}\right)+F_{w i n d}\left(X_{w i n d}-X_{c g}\right)
\end{array}
\end{align*}
$$

\sum Roll moments $=\left(F_{u f r}+F_{u f l}+F_{u b r}+F_{u b l}\right)\left(Z_{c g}-Z_{u}\right)$

$$
\begin{gather*}
+\left(F_{l f r}+F_{l f l}+F_{l b r}+F_{l b l}\right)\left(Z_{c g}-Z_{l}\right) \\
-\left(F_{s f r}+F_{s f l}+F_{s b r}+F_{s b l}\right)\left(Z_{c g}-Z_{s}\right)-F_{\text {wind }}\left(Z_{\text {wind }}-Z_{c g}\right)-W_{p} Y_{p} \\
+\frac{1}{2} D_{\text {mainwheels }}\left(F_{\text {main }_{L}}-F_{\text {main }_{R}}\right) \tag{4-2}
\end{gather*}
$$

in which $F_{\text {wind }}>0$ if it blows to the left, $X_{\text {wind }}$ and $Z_{\text {wind }}$ define the position of application of its centroid, W_{p} is the weight of a passenger, Y_{p} is the sidewise displacement of the passenger, and $D_{\text {mainwheels }}$ is the distance between the centerlines of the right and left main support tires.

The coordinates of application of the forces are tentatively given in Table 1, in which the distances, which are shown in Figure 6, are given in the above-defined body reference frame. These values will likely change somewhat as the design proceeds.

Table 1. Coordinates of Application Points of the Forces, inches

$\mathrm{u}=$ upper wheel	$\mathrm{f}=$ front wheel	$\mathrm{r}=$ right wheel	$\mathrm{s}=$ switch wheel
$\mathrm{l}=$ lower wheel	$\mathrm{b}=$ back wheel	$\mathrm{l}=$ left wheel	
Position of cg	$\mathrm{Xcg}=41$	$\mathrm{Ycg}=0$	$\mathrm{Zcg}=26$
Wind, Passenger	$\mathrm{X}_{\text {wind }}=41$	$\mathrm{Yp}=20$	$\mathrm{Z}_{\text {wind }}=57$
Wheels			
Ufr	$\mathrm{Xuf}=82$	$\mathrm{Yr}=-10.5$	$\mathrm{Zu}=21$
Ufl	$\mathrm{Xuf}=82$	$\mathrm{Yl}=10.5$	$\mathrm{Zu}=21$
Ubr	$\mathrm{Xub}=0$	$\mathrm{Yr}=-10.5$	$\mathrm{Zu}=21$
Ubl	$\mathrm{Xub}=0$	$\mathrm{Yl}=10.5$	$\mathrm{Zu}=21$
Lfr	$\mathrm{Xlf}=68$	$\mathrm{Yr}=-10.5$	$\mathrm{Zl}=-4.2$
Lfl	$\mathrm{Xlf}=68$	$\mathrm{Yr}=10.5$	$\mathrm{Zl}=-4.2$
Lbr	$\mathrm{Xlb}=12$	$\mathrm{Yr}=-10.5$	$\mathrm{Zl}=-4.2$
Lbl	$\mathrm{Xlb}=12$	$\mathrm{Yl}=10.5$	$\mathrm{Zl}=-4.2$
Sfr	$\mathrm{Xsf}=72$	$\mathrm{Ysr}=-6.6$	$\mathrm{Zs}=8.4$
Sfl	$\mathrm{Xsf}=72$	$\mathrm{Ys}=6.6$	$\mathrm{Zs}=8.4$
Sbr	$\mathrm{Xsb}=10$	$\mathrm{Ysr}=-6.6$	$\mathrm{Zs}=8.4$
Sbl	$\mathrm{Xsb}=10$	$\mathrm{Ysl}=6.6$	$\mathrm{Zs}=8.4$
LIM	$\mathrm{X}_{\mathrm{LIMf}}=66$	$\mathrm{Y}_{\mathrm{LIMf}}=0$	$\mathrm{Z}_{\mathrm{LIMf}}=-6.6$
LIM	$\mathrm{X}_{\mathrm{LIMb}}=6$	$\mathrm{Y}_{\mathrm{LIMb}}=0$	$\mathrm{Z}_{\mathrm{LIMb}}=-6.6$

5. Equations of the Center of the Curved Guideway.

Consider Figure 1. The position of an $\boldsymbol{I T N S}$ vehicle as it moves along the guideway is defined by the equation $s=V t$, where V is the constant speed of the vehicle and t is time; however, we begin the simulation at a negative value of s in order to permit the motion to settle before the diverge point is reached. We define $s=0$ at a point $x=0$ in Figure 1 where the guideway begins to curve. To find the side-tire deflections, we need the x and y coordinates of each of the running surfaces for a given value of s. This calculation begins with the equations of the center of the
curved guideway. We can derive the $x(s), y(s)$ curve for the centerline of the curved guideway from Transit Systems Theory, Chapter 3. For $s<0$ this is a straight line at $y=0$. At $s=0$ it begins to curve to the left first at a constant rate of change of curvature, and then when the lateral acceleration has reached the comfort level a_{n} at constant curvature. The guideway at any point makes an angle Ψ with the x axis. In the constant-rate-of-change-of-curvature region the solution is

$$
\begin{equation*}
\frac{d^{2} \Psi}{d s^{2}}=\frac{J_{n}}{V^{3}}, \quad \frac{d \Psi}{d s}=\frac{J_{n} s}{V^{3}}=\frac{1}{R}=\frac{a}{V^{2}}, \quad s=V \frac{a}{J_{n}}, \quad \Psi=\frac{J_{n} s^{2}}{2 V^{3}} \tag{5-1}
\end{equation*}
$$

in which J_{n} is the comfort level of lateral jerk, V is the speed along the curved guideway, R is the radius of curvature, and a is lateral acceleration. When a reaches the maximum comfort value $a_{n} s$ reaches a point we call point 1 where

$$
\begin{equation*}
s=s_{1}=V \frac{a_{n}}{J_{n}} \text { and } \Psi=\Psi_{1}=\frac{a_{n}^{2}}{2 V J_{n}} \tag{5-2}
\end{equation*}
$$

If for example $V=30 \mathrm{mph}$ or $44 \mathrm{ft} / \mathrm{sec}, J_{n}=0.25 \mathrm{~g} / \mathrm{sec}, a=a_{n}=0.2 \mathrm{~g}$ and $\mathrm{g}=32.174 \mathrm{ft} / \mathrm{sec}^{2}$, then $s_{1}=44 \frac{0.2}{0.25}=35.2 \mathrm{ft}$ and $\Psi_{1}=\frac{(0.2 g)^{2}}{88(0.25 g)}=0.0585$ radians or 3.35 degrees.
The coordinates of the guideway centerline between $s=0$ and $s=s_{1}$ are

$$
\begin{gather*}
\frac{d x}{d s}=\cos \Psi, \quad x \cong \int_{0}^{s}\left(1-\frac{\Psi^{2}}{2}\right) d s=s\left(1-\frac{1}{10} \Psi^{2}\right) \\
\frac{d y}{d s}=\sin \Psi, \quad y \cong \int_{0}^{s}\left(\Psi-\frac{\Psi^{3}}{6}\right) d s=\frac{s \Psi}{3}\left(1-\frac{1}{14} \Psi^{2}\right) \tag{5-3}
\end{gather*}
$$

At $s=s_{1}$ we have, for the values chosen above, $x_{1}=35.2(1-0.0003) \mathrm{ft}$, and $y_{1}=\frac{35.2(0.0585)}{3}(1-0.0002)=0.686 \mathrm{ft}=8.24 \mathrm{in}$. No te from Table 1 that the horizontal distance from the guideway centerline to the side running surface is 10.5 in , which is greater than y_{1}, a fact that is needed in Section 10.

For $s>s_{1}$ the curvature is constant at

$$
\begin{equation*}
\frac{d \Psi}{d s}=\frac{1}{R}=\frac{a_{n}}{V^{2}} \tag{5-4}
\end{equation*}
$$

The coordinates of the center of curvature are

$$
x_{c}=x_{1}-R \sin \Psi_{1}, \quad y_{c}=y_{1}+R \cos \Psi_{1}
$$

and the coordinates of any point in the constant curvature region are

$$
\begin{equation*}
x=x_{c}+R \sin \Psi, \quad y=y_{c}-R \cos \Psi \tag{5-6}
\end{equation*}
$$

in which

$$
\begin{equation*}
\Psi=\Psi_{1}+\frac{s-s_{1}}{R} \tag{5-7}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{1}=V \frac{a_{n}}{J_{n}}, \quad R=\frac{V^{2}}{a_{n}}, \quad \Psi_{1}=\frac{a_{n}^{2}}{2 V J_{n}}, \quad x_{1}=s_{1}\left(1-\frac{\Psi_{1}^{2}}{10}\right), \quad y_{1}=\frac{a_{n}^{3}}{6 J_{n}^{2}}\left(1-\frac{\Psi_{1}^{2}}{14}\right) \tag{5-8}
\end{equation*}
$$

Summarizing,

$$
\begin{gather*}
\text { if } 0<s<s_{1} \quad \Psi=\frac{J_{n} s^{2}}{2 V^{3}}, \quad x=s\left(1-\frac{1}{10} \Psi^{2}\right), \quad y=\frac{s \Psi}{3}\left(1-\frac{1}{14} \Psi^{2}\right) \\
\text { if } s \geq s_{1} \quad \Psi=\Psi_{1}+\frac{s-s_{1}}{R}, \quad x=x_{c}+R \sin \Psi, \quad y=y_{c}-R \cos \Psi \tag{5-9}
\end{gather*}
$$

6. Equations of the Outer Running Surfaces

Facing the direction of motion of the vehicle, which is to the right in Figure 1, call the "outer running surfaces" the extreme left and right surfaces. Call the "inner running surface" the intermediate left and right surfaces after a vehicle has diverged, i.e., the right running surface of the left segment of guideway and the left running surface of the right segment of guideway. The side wheels run against these surfaces. Facing the direction of motion, the right outer running surface is parallel to the x-axis and at the position $y=-0.5 w$, where w is the distance between the left and right main running surfaces. The left outer running surface is found by adding $\frac{0.5 w}{\cos \Psi}$ to y in equations (5-9). As mentioned, from Table $10.5 w=10.5 \mathrm{in}$.

7. Equations of the Switch Rail Running Surfaces

The switch rails are present from $s=-L_{s w x}$ to $s=s_{\text {start }}+L_{\text {main }}+L_{s w x}$, in which $L_{s w x}$ is the length of the flare section of the switch rails, $L_{\text {main }}$ is the length of the main rail flared section at the diverge point (see Figure 1), and $s_{\text {start }}$, derived in Section 8, is the value of arc-length s along the curved guideway of Figure 1 at the point where the inner running surfaces start. Based on the analysis given in Appendix B, to account for variations in the positions of the switch wheels due to external forces the switch rails must be flared at the entry and exit points according to a cubic equation, which is a section of constant rate of change of curvature. Let $D_{s w x}$ be the lateral distance the initial end of the flared section lies from a point where it would be
if there were no flare. Assume the flared section ends when $s=0$, which is the point at which the constant rate of change of curvature of the left running surface starts.

If $-L_{s w x} \leq s \leq 0$, the equation of the left switch rail is then

$$
\begin{equation*}
y_{s w x_{l e f t}}=0.5 w-w_{s w x}+D_{s w x}\left(\frac{s}{L_{s w x}}\right)^{3} \tag{7-1}
\end{equation*}
$$

in which $w_{s w x}=4.5$ inch is the gap between the main left running surface and the switch-rail running surface at $s=0$. When $s>0 y$ differs from the main left running surface only in that $0.5 w / \cos \Psi$ must be replaced by $\left(0.5 w-w_{s w x}\right) / \cos \Psi$.

Using the notation of Section 8, when $s_{\text {start }}+L_{\text {main }} \leq s \leq s_{s t a r t}+L_{\text {main }}+L_{s w x}$ the equation of the downstream end of the left switch rail is

$$
y_{s w x_{l e f t}}=\left[0.5 w-w_{s w x}-D_{s w x}\left(\frac{s-s_{s t a r t}-L_{\text {main }}}{L_{s w x}}\right)^{3}\right] / \cos \Psi
$$

Similarly, if - $L_{s w x} \leq s \leq 0$ the equation of the right switch rail is

$$
y_{s w x_{r i g h t}}(x)=-0.5 w+w_{s w x}-D_{s w x}\left(\frac{s}{L_{s w x}}\right)^{3}
$$

if $0 \leq s<s_{\text {start }}+L_{\text {main }}$

$$
\begin{aligned}
& \qquad y_{s w x_{\text {right }}}=-0.5 w+w_{s w x} \\
& \text { and if } s_{\text {start }}+L_{\text {main }} \leq s \leq s_{\text {start }}+L_{\text {main }}+L_{s w x}
\end{aligned}
$$

$$
\begin{equation*}
y_{s w x_{\text {right }}}(x)=-0.5 w+w_{s w x}+D_{s w x}\left(\frac{s-s_{s t a r t}-L_{\text {main }}}{L_{s w x}}\right)^{3} \tag{7-2}
\end{equation*}
$$

8. Equations of the Inner Running Surfaces.

The flared inner running surfaces are shown in Figure 1. Let $x_{\text {start }}$ be the x-coordinate of the point at which these running surfaces start. The y-distance from the right outer running surface to the point where the two flared surfaces intersect, i.e., where the flared inner running surfaces start, is $w+D_{\text {main }}$, where $D_{\text {main }}$ is the lateral distance between the end of the flare and the right inner running surface after the flare ends. Appendix E shows that the y-distance at $x_{\text {start }}$ from the right outer running surface to the point of intersection to the left branch's right running sur-
face if there were no flare is $w+D_{\text {main }}(1+1 / \cos \Psi)$. This value is also given by the rightmost equation in equations (5-9). Thus

$$
\begin{equation*}
w+D_{\text {main }}\left(1+1 / \cos \Psi_{\text {start }}\right)=y_{c}-R \cos \Psi_{\text {start }} \tag{8-1}
\end{equation*}
$$

in which the subscript "start" designates the value of Ψ at the start of the inner running surfaces. Multiply equation (8-1) by $\cos \Psi_{\text {start }}$ and rearranged in the standard form of a quadratic equation. Then

$$
R \cos ^{2} \Psi_{\text {start }}-Q \cos \Psi_{\text {start }}+D_{\text {main }}=0
$$

in which $Q=y_{c}-w-D_{\text {main }}$. Thus

$$
\cos \Psi_{\text {start }}=\frac{1}{2 \mathrm{R}}\left[Q \pm \sqrt{Q^{2}-4 R D_{\text {main }}}\right]
$$

As $D_{\text {main }} \rightarrow 0$ equation (8-1) shows that $\cos \Psi_{\text {start }}$ goes to $\frac{y_{c}-w}{R}$, which corresponds to the + sign, which is therefore the correct one. The value of $\cos \Psi$ at the start of the inner surfaces is therefore

$$
\begin{equation*}
\cos \Psi_{\text {start }}=\frac{1}{2 \mathrm{R}}\left[\mathrm{Q}+\sqrt{Q^{2}-4 R D_{\text {main }}}\right] \tag{8-2}
\end{equation*}
$$

From equations (5-9), the arc length at the starting point is

$$
\begin{equation*}
s_{\text {start }}=s_{1}+R\left[\cos ^{-1}\left(\cos \Psi_{\text {start }}\right)-\Psi_{1}\right] \tag{8-3}
\end{equation*}
$$

Also from equations (5-9) and a well-known trigonometric identity the value of x at the start point is,

$$
\begin{equation*}
x_{\text {start }}=x_{c}+R \sqrt{1-\cos ^{2} \Psi_{\text {start }}} \tag{8-4}
\end{equation*}
$$

The equation for the main flare on the inside running surfaces is

$$
\begin{equation*}
y_{\text {flare }}(s)=D_{\text {main }}\left(\frac{L_{\text {main }}+s_{\text {start }}-s}{L_{\text {main }}}\right)^{3} \text { if } s_{\text {start }} \leq s \leq s_{\text {start }}+L_{\text {main }} \text { else } y_{\text {flare }}=0 \tag{8-5}
\end{equation*}
$$

in which $L_{\text {main }}$ is the length of the flared section. For the left running surface of the right branch, the sign of $y_{f f a r e}$ is positive and $\Psi=0$.

The equation for the left running surface of the right branch of the diverge is

$$
\begin{equation*}
y(s)=0.5 w+y_{\text {flare }}(s) \tag{8-6}
\end{equation*}
$$

The equations for the right running surface of the left branch of the diverge are, from equations (5-9), starting at $s=s_{\text {start }}>s_{1}$,

$$
\begin{gather*}
\Psi=\Psi_{1}+\frac{s-s_{1}}{R}, \quad x(s)=x_{c}+R \sin \Psi \\
y(s)=y_{c}-R \cos \Psi-\left(0.5 w+y_{\text {flare }}(s)\right) / \cos \Psi \tag{8-7}
\end{gather*}
$$

in which R and the values with subscript " 1 " are defined by equations (5-8).

9. Tire Force-Deflection Relationships for the Tires

In Appendix C we show that the force on each of our solid polyurethane side tires is proportional to the 1.5 power of the deflection, but the force on the pneumatic main-support tires is proportional to the first power of the deflection. In Appendix D we derive a simple relationship for the energy loss as tire first compresses and then decompresses. We use this relationship in the program of Appendix E.

10. The Deflection of the Side Tires

Figure 2. The Geometry of a Tire Deflection.
10.1 Deflection of the side tires running against the outer main running surfaces.

The s-position of the mass center of the vehicle is at the point marked " s " in Figure 2. We designate the coordinates of this point as $\mathrm{x}(\mathrm{s}), y(s)$. At this point, the guideway centerline for the left outer main running surface lies at an angle Ψ with the x -axis. The chassis mass center is
displace a distance $y_{m c} \hat{\jmath}^{\prime}$ and lies at a small angle ψ with respect to the guideway centerline. Using equations (3-5) the x and y coordinates of a tire-contact point are

$$
\begin{align*}
& x \text { Tire }=x(s)-S \Psi y_{m c}+C(\Psi+\psi)\left(x_{w}-X_{m c}\right)-S(\Psi+\psi)\left[C \phi y_{w}-S \phi\left(z_{w}-Z_{m c}\right)\right] \\
& y \text { Tire }=y(s)+C \Psi \mathrm{y}_{\mathrm{mc}}+S(\Psi+\psi)\left(x_{w}-X_{m c}\right)+C(\Psi+\psi)\left[C \phi y_{w}-S \phi\left(z_{w}-Z_{m c}\right)\right] \tag{10.1-1}
\end{align*}
$$

in which $\mathrm{x}_{\mathrm{w}}, \mathrm{y}_{\mathrm{w}}, \mathrm{z}_{\mathrm{w}}$ are the coordinates of a tire contact point measured in body axes, obtained from Table 1.

With $y=0$ at $s=0$ for the guideway-center curve, we have from Section 6 and equations (5-9) the equations of the left outer running surface:

$$
\text { if } s \leq 0 y=0.5 w
$$

If $0<s<s_{1}$

$$
\begin{equation*}
\Psi=\frac{J_{n} s^{2}}{2 V^{3}}, \quad x=s\left(1-\frac{1}{10} \Psi^{2}\right), \quad y=0.5 w / \cos \Psi+\frac{s \Psi}{3}\left(1-\frac{1}{14} \Psi^{2}\right) \tag{10.1-2}
\end{equation*}
$$

If $s \geq s_{1}$

$$
\begin{equation*}
\Psi=\Psi_{1}+\frac{s-s_{1}}{R}, \quad x=x_{c}+R \sin \Psi, \quad y=0.5 w / \cos \Psi+y_{c}-R \cos \Psi \tag{10.1-3}
\end{equation*}
$$

After calculating x Tire and y Tire from equations (10.1-1), we need to find the correspond value of $y=y$ Rail for the left-outer running surface. Having this value, we see from Figure 2 that the deflection of the front-left tire is

$$
\begin{equation*}
\delta=(y \text { Tire }-y \text { Rail }) \cos \Psi \tag{10.1-4}
\end{equation*}
$$

in which we must determine both y Rail and $\cos \Psi$.

If x Tire ≤ 0 then $\cos \Psi=1$ and y Rail $=0.5 \mathrm{w}$.

If $0<x$ Tire $<x_{1}$ the needed values of Ψ and y Rail come from equations (10.1-2). To find these values, we need to solve the equation for $\mathrm{x}(\mathrm{s})$ inversely for s, which would require solution of a fifth-order polynomial. Unfortunately, there is no known exact solution for such an equation. Hence, we must turn to a numerical solution. Let the first guess be $s=s_{l s t}=x_{1 s t}$ and the second guess $s_{2 n d}=s_{1 s t}+d s$, where $d s$ is a given small value, from the numerical work after equation (5-3) about 0.01 ft . The value of x calculated from $s_{2 n d}$ is $x_{2 n d}$. Then, since the difference between x and s is very small, we take as the correct value of s as

$$
\begin{equation*}
s=s_{2 n d}+d s\left(\frac{x \text { Tire }-x_{2 n d}}{x_{2 n d}-x_{1 s t}}\right) \tag{10.1-5}
\end{equation*}
$$

With this value of s, we have from equations (10.1-2)

$$
\begin{equation*}
\Psi=\frac{J_{n} s^{2}}{2 V^{3}} \text { and } y \text { Rail }=0.5 w / \cos \Psi+\frac{s \Psi}{3}\left(1-\frac{1}{14} \Psi^{2}\right) \tag{10.1-6}
\end{equation*}
$$

If x Tire $\geq x_{1}$ we have an exact solution. From the second of equations (10.1-3) we calculate

$$
\begin{equation*}
\sin \Psi=\frac{x \text { Tire }-x_{c}}{R} \tag{10.1-7}
\end{equation*}
$$

Then by using a well-known trigonometric identity we can calculate

$$
\begin{equation*}
\cos \Psi=\sqrt{1-\sin ^{2} \Psi} \tag{10.1-9}
\end{equation*}
$$

Then, from the third of equations (10.1-3),

$$
\begin{equation*}
y \text { Rail }=0.5 w / \cos \Psi+y_{c}-R \cos \Psi \tag{10.1-10}
\end{equation*}
$$

For the right outer running surface, $x(s)=s, y(s)=-0.5 w$. With these values, equation (10.11) with $\Psi=0$ gives x Tire, y Tire. The tire deflection is then

$$
\begin{equation*}
\delta=-y \text { Tire }-0.5 w \text { if }>0 \text { else } 0 \tag{10.1-11}
\end{equation*}
$$

10.2 Deflection of the switch tires running against the switch surfaces.

The switch rails run from $s=-L_{s w x}$ to $s=s_{\text {start }}+L_{\text {main }}+L_{s w x}$, in which these lengths are defined in Sections 7 and 8. To find the position of the left switch tires, note that in equations (10.1-1) for the switch wheels on the left side, substitute for $\mathrm{x}_{\mathrm{w}}, \mathrm{y}_{\mathrm{w}}, \mathrm{Z}_{\mathrm{w}}$ from Table 1 the values $X s f / b-X c g, Y s l, Z s-Z c g$. This gives x Tire and y Tire for the left switch tires. To find y Rail at x Tire, we have the following equations:

From equation (7-1), if $-L_{s w x} \leq s<0$

$$
\begin{gathered}
y \text { Rail }_{\text {left }}=0.5 w-w_{s w x}+D_{s w x}\left(\frac{x \text { Tire }}{L_{s w x}}\right)^{3} \\
y \text { Rail }_{\text {right }}=-0.5 w+w_{s w x}-D_{s w x}\left(\frac{x \text { Tire }}{L_{s w x}}\right)^{3}
\end{gathered}
$$

For the left switch rail, if $0 \leq s<s_{1}$ then we must use the same numerical method used in Section 10.1. In this case from equations (10.1-2), using equation (10.1-5) to find $s(x$ Rail), we have for $s<s_{1}$

$$
\begin{equation*}
\Psi=\frac{J_{n} s^{2}}{2 V^{3}}, \quad x \text { Rail }=s\left(1-\frac{1}{10} \Psi^{2}\right), \quad y \text { Rail }=\left(0.5 w-w_{s w x}\right) / \cos \Psi+\frac{s \Psi}{3}\left(1-\frac{1}{14} \Psi^{2}\right) \tag{10.2-2}
\end{equation*}
$$

If $s \geq s_{1}$ we have

$$
y \text { Rail }_{l e f t}=\left(0.5 w-w_{s w x}\right) / \cos \Psi+y_{c}-R \cos \Psi-S w x F l a r e(s) / \cos \Psi
$$

where

$$
\cos \Psi=\sqrt{1-\left(\frac{x \text { Tire }-x_{c}}{R}\right)^{2}}
$$

in which in the region $s=s$ Start $+L_{\text {main }}$ to s Start $+L_{\text {main }}+L_{s w x}$

$$
\begin{equation*}
\operatorname{SwxFlare}(s)=D_{s w x}\left(\frac{s-S_{s t a r t}-L_{\text {main }}}{L_{s w x}}\right)^{3} \text { otherwise } 0 . \tag{10.2-3}
\end{equation*}
$$

Then, similar to equation (10.1-4), for positive deflection for the left switch rail we have

$$
\begin{equation*}
\delta=(y \text { Rail }-y \text { Tire }) \cos \Psi \text { if }>0 \text { else } 0 \tag{10.2-3}
\end{equation*}
$$

For the right switch rail and $s>0$

$$
\begin{equation*}
y \text { Rail }_{\text {right }}=-0.5 w+w_{s w x}+S w x \operatorname{Flare}(s) \tag{10.2-4}
\end{equation*}
$$

i.e. set $\Psi=0$ and change the sign.
10.3 Deflection of the side tires running against the inner main running surface.

First, the right side of the left guideway.

The values of x Tire and y Tire are computed from equations (10.1-1) with $Y_{w}=Y r$ from Table 1. From equation (8-7) we have for $s \geq s_{\text {start }}$

$$
\begin{gather*}
\cos \Psi=\sqrt{1-\left(\frac{x T i r e-x_{c}}{R}\right)^{2}} \\
y \text { Rail }_{\text {right }}=-0.5 \mathrm{w} / \cos \Psi+y_{c}-R \cos \Psi-y_{\text {flare }}(s) / \cos \Psi \tag{10.2-5}
\end{gather*}
$$

in which

$$
y_{\text {flare }}(s)=D_{\text {main }}\left(\frac{s_{\text {start }}+L_{\text {main }}-s}{L_{\text {main }}}\right)^{3} \text { if } s_{\text {start }} \leq s<s_{\text {start }}+L_{\text {main }} \text { else } 0 .
$$

The positive deflection is then given by equation (10.2-3).
For the left side of the right guideway, to get x Tire \& y Tire, set $x(s)=s, y(s)=0, y_{w}=Y l$ from Table 1.

$$
y \text { Rail }_{\text {left }}=0.5 w+y_{\text {flare }}(s)
$$

Then

$$
\delta=y \text { Tire }-y \text { Rail }_{\text {left }} .
$$

11. Deflection of the Main Tires

If the four main support tires that run on the bottom horizontal surface are pneumatic ${ }^{2}$, the force on each tire from Appendix C is proportional to the first power of the deflection. Thus

$$
\begin{equation*}
\delta_{F L}+\delta_{F R}+\delta_{B L}+\delta_{B R}=\frac{W_{v e h}+W_{\text {pass }}}{k} \tag{9-5}
\end{equation*}
$$

in which k is the main tire stiffness, $W_{\text {veh }}$ is the empty weight of the vehicle, and $W_{\text {pass }}$ is the weight of the passenger (see Appendix C). If the vehicle has tilted to the right by the angle ϕ, the deflection of the right tire is greater than the deflection of the left tire by

$$
\begin{equation*}
\delta_{F R}=\delta_{F L}+D_{\text {mainwheels }} \phi, \quad \delta_{B R}=\delta_{B L}+D_{\text {mainwheels }} \phi \tag{9-6}
\end{equation*}
$$

in which $D_{\text {mainwheels }}$ is the separation between the left and right tire contact points.

If $X_{m c}$ is the distance between the axles of the rear wheels and the mass center of the vehicle, $\mathrm{X}_{\text {pass }}$ is the horizontal distance of the passenger to the rear wheels and $W B$ is the wheelbase of the vehicle, then by taking moments about the rear wheels we get

[^1]\[

$$
\begin{equation*}
\delta_{F R}+\delta_{F L}=\frac{W_{v e h} X_{m c}+W_{\text {pass }} X_{\text {pass }}}{k W B} \tag{9-7}
\end{equation*}
$$

\]

Substituting into equation (9-5),

$$
\begin{align*}
\delta_{B R}+\delta_{B L}= & \frac{W_{v e h}+W_{\text {pass }}}{k}-\frac{W_{v e h} X_{m c}+W_{\text {pass }} X_{\text {pass }}}{k W B} \\
& =\frac{W_{v e h}\left(W B-X_{m c}\right)+W_{\text {pass }}\left(W B-X_{\text {pass }}\right)}{k W B} \tag{9-8}
\end{align*}
$$

Then, using equations (9-6) we get

$$
\delta_{F R}=\delta_{F L}+D_{\text {mainwheels }} \phi, \quad \delta_{B R}=\delta_{B L}+D_{\text {mainwheels }} \phi
$$

$$
\begin{gather*}
\delta_{F L}=\frac{1}{2}\left(\frac{W_{\text {veh }} X_{m c}+W_{\text {pass }} X_{\text {pass }}}{k W B}-D \phi\right), \quad \delta_{F R}=\frac{1}{2}\left(\frac{W_{v e h} X_{m c}+W_{\text {pass }} X_{\text {pass }}}{k W B}+D \phi\right) \\
\delta_{B L}=\frac{1}{2}\left[\frac{W_{v e h}\left(W B-X_{m c}\right)+W_{\text {pass }}\left(W B-X_{\text {pass }}\right)}{k W B}-D \phi\right], \quad \delta_{B R}=\frac{1}{2}\left[\frac{W_{\text {veh }}\left(W B-X_{m c}\right)+W_{\text {pass }}\left(W B-X_{\text {pass }}\right)}{k W B}+D \phi\right] \tag{9-9}
\end{gather*}
$$

where $D=D_{\text {mainwheels }}$.

12. A Limitation on the Tire Force-Deflection Relationship

In Section 9 it is shown that the force-deflection relationship for the side tires is

$$
\begin{equation*}
\text { Force }=k \delta^{3 / 2} \tag{10-1}
\end{equation*}
$$

where δ is the deflection and k is a constant that must be low enough to meet ride-comfort standards, but not so low that the chassis will rub against the top edge of the cover. Thus, we must know the distance between the top edge of the cover and the centerline of the main support wheels. We must calculate the quantity

$$
\begin{equation*}
y_{\text {cover }}=\left[y_{m c}-\left(Z_{\text {cover }}-Z_{m c}\right) \phi\right]_{\max } \tag{10-2}
\end{equation*}
$$

where $Z_{\text {cover }}=31.6$ inches.

13. Passenger Motion

Our prime interest is in the lateral acceleration of the passenger. We model the passenger as a concentrated mass located a distance $D_{\text {pass }}$ above the seat and subject to the lateral acceleration of
the seat. It takes about 5 lb to move the passenger's mass center sideways one inch, giving a spring constant of

$$
k_{\text {pass }}=5 \frac{l b}{\mathrm{in}} \times \frac{1 \mathrm{in}}{0.0254 \mathrm{~m}} \times \frac{4.448 \mathrm{~N}}{\mathrm{lb}}=875 \mathrm{~N} / \mathrm{m}
$$

The equation of motion is

$$
\frac{W_{\text {pass }}}{g} \ddot{y}_{\text {pass }}=-k_{\text {pass }} y_{\text {pass }}-c \dot{y}_{\text {pass }}+\frac{W_{\text {pass }}}{g} \ddot{y}_{\text {seat }}
$$

in which c is a damping constant. In standard form this equation is

$$
\ddot{y}_{\text {pass }}+2 \zeta \omega_{n} \dot{y}_{\text {pass }}+\omega_{n}^{2} y_{\text {pass }}=\ddot{y}_{\text {seat }}
$$

in which

$$
\omega_{n}^{2}=\frac{k_{\text {pass }} g}{W_{\text {pass }}}, \quad 2 \zeta \omega_{n}=\frac{c g}{W_{\text {pass }}}
$$

We will assume that $\zeta \cong 0.7$.

14. Motion of the LIM Bogie

Two LIMs are mounted side by side and ride on a set of four 4-in diameter wheels, two in the front and two in the back. This bogie is the tug that propels the vehicle and it is guided sideways via attachment points on the chassis, which are located in body axes at points given in Table 1. From equation (3-1), the vector distance to these points is

$$
\begin{equation*}
\vec{R}=\vec{R}_{0}+y_{m c} \hat{\jmath}^{\prime}+\Delta X \hat{\imath}_{b}+\Delta Z \hat{k}_{b} \tag{14-1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta X=X_{L I M_{f, b}}-X_{m c}, \quad \Delta Z=Z_{L I M}-Z_{m c} \tag{14-2}
\end{equation*}
$$

But

$$
X_{L I M_{b}}-X_{m c}=-\left(X_{L I M_{f}}-X_{m c}\right)
$$

Thus, let $\Delta X \equiv X_{L I M_{f}}-X_{m c}>0$.

The LIM Bogie front and back attachment points will follow the chassis attachment points through a pair of springs of spring constant $k_{L I M}$.

Side motion of the LIM Bogie is defined by two parameters: $y_{\text {LIMmC }}$, which is the sidewise motion of the LIM-bogie mass center; and $\psi_{L I M}$, the angular motion about the mass center referenced to the direction of the guideway. Thus, the vector distance to these attachment points is

$$
\begin{equation*}
\vec{R}_{L I M}=\vec{R}_{0}+y_{L I M m c} \hat{\jmath}^{\prime} \pm \Delta X \hat{\imath}_{b} \pm \Delta X\left(\psi_{L I M}-\psi\right) \hat{\jmath}_{b}+\Delta Z \hat{k}_{b} \tag{14-3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\Delta \vec{R}=\vec{R}_{L I M}-\vec{R}=\left(y_{L I M m c}-y_{m c}\right) \hat{\jmath}^{\prime} \pm \Delta X\left(\psi_{L I M}-\psi\right) \hat{\jmath}_{b} \tag{14-4}
\end{equation*}
$$

in which, from equations (3-3),

$$
\hat{\jmath}_{b}=-S \psi C \phi \hat{\imath}^{\prime}+C \psi C \phi \hat{\jmath}^{\prime}+S \phi \hat{k}^{\prime}
$$

Thus, since the angles are very small, the LIM-bogie attachment points are displaced laterally (in the $\hat{\jmath}^{\prime}$ direction) from the corresponding chassis attachment point by the amounts

$$
\begin{equation*}
\Delta=y_{L I M m c}-y_{m c} \pm \Delta X\left(\psi_{L I M}-\psi\right) \tag{14-5}
\end{equation*}
$$

Thus the force exerted by the chassis on the bogie is

$$
\begin{equation*}
F=-k_{\text {LIM }} \Delta \tag{14-6}
\end{equation*}
$$

and by the bogie on the chassis $+k_{L I M} \Delta$.

When the bogie experiences a \hat{j}^{\prime} component of velocity there will be a friction force from the running surface on the bogie tires. To find it, differentiate equation (14-3). Thus

$$
\begin{aligned}
\frac{d \vec{R}_{L I M}}{d t}=\vec{V}+ & \dot{y}_{L I M_{m c} \hat{\jmath}^{\prime}}+y_{L I M m c} \frac{d \hat{\jmath}^{\prime}}{d t} \pm \Delta X \frac{d \hat{\imath}_{b}}{d t} \pm \Delta X\left(\dot{\psi}_{L I M}-\dot{\psi}\right) \hat{\jmath}_{b} \pm \Delta X\left(\psi_{L I M}-\psi\right) \frac{d \hat{\jmath}_{b}}{d t} \\
& +\Delta Z \frac{d \hat{k}_{b}}{d t}
\end{aligned}
$$

But

$$
d \hat{\jmath}^{\prime}=-d \Psi \hat{\imath}^{\prime}, \quad d \hat{l}_{b}=d \psi \hat{\jmath}_{b}, \quad d \hat{\jmath}_{b}=-d \psi \hat{\imath}_{b}+d \phi \hat{k}_{b}, \quad d \hat{k}_{b}=-d \phi \hat{\jmath}_{b}
$$

Thus,

$$
\begin{gathered}
\vec{V}_{L I M}=\vec{V}+\dot{y}_{L I M}^{m c} \\
\hat{\jmath}^{\prime}-y_{L I M m c} \dot{\Psi} \hat{\imath}^{\prime} \pm \Delta X \dot{\psi} \hat{\jmath}_{b} \pm \Delta X\left(\dot{\psi}_{L I M}-\dot{\psi}\right) \hat{\jmath}_{b} \\
\pm \Delta X\left(\psi_{L I M}-\psi\right)\left(-\dot{\psi} \hat{\imath}_{b}+\dot{\phi} \hat{k}_{b}\right)-\Delta Z \dot{\phi} \hat{\jmath}_{b}
\end{gathered}
$$

$$
\begin{array}{r}
=V \hat{\imath}^{\prime}+\dot{y}_{L I M_{m c}} \hat{\jmath}^{\prime}-y_{L I M m c} \dot{\psi} \hat{\imath}^{\prime}+\left(\pm \Delta X \dot{\psi}_{L I M}-\Delta Z \dot{\phi}\right)\left(-S \psi C \phi \hat{\imath}^{\prime}+C \psi C \phi \hat{\jmath}^{\prime}+S \phi \hat{k}^{\prime}\right) \\
\pm \Delta X\left(\psi_{L I M}-\psi\right)\left[-\dot{\psi}\left(C \psi \hat{\imath}^{\prime}+S \psi \hat{\jmath}^{\prime}\right)+\dot{\phi}\left(S \psi S \phi \hat{\imath}^{\prime}-C \psi S \phi \hat{\jmath}^{\prime}+C \phi \hat{k}^{\prime}\right)\right] \tag{14-7}
\end{array}
$$

Dropping products of small angles, the transverse component (in the $\hat{\jmath}^{\prime}$ direction) is

$$
\dot{y}_{L I M_{m c}} \pm \Delta X \dot{\psi}_{L I M}-\Delta Z \dot{\phi}
$$

Note that ΔZ is negative. When $\psi_{L I M}$ is not in the direction of the bogie velocity vector, the LIM wheels will be subject to a side-friction force proportional to the difference between $\psi_{L I M}$ and the direction the velocity vector, the downward force on the bogie wheels, and the coefficient of rolling friction μ. This force on the LIM-bogie wheels is in the direction of the sign of $\psi_{\text {LIM }}-$ $\frac{\dot{y}_{L I M_{m c}} \pm \Delta x \dot{\psi}_{\text {LIM }}-\Delta Z \dot{\phi}}{V}$. Thus the friction force on the LIM bogie is

$$
\begin{equation*}
F_{\text {friction }_{f, b}}=\frac{1}{2} \mu F_{\text {normal }}\left(\psi_{L I M}-\frac{\dot{y}_{L I M_{m c}} \pm \Delta X \dot{\psi}_{L I M}-\Delta Z \dot{\phi}}{V}\right) \tag{14-8}
\end{equation*}
$$

When the LIMs are operating, a normal force is produced closely equal to the thrust, which, when speed is constant, is equal to the sum of air drag and rolling resistance. Thus,

$$
F_{\text {normal }}=W_{\text {LIM }}+\text { AirDrag }+ \text { RollingResistance }
$$

in which (see equation (2-2))

$$
\text { AirDrag }=C V^{2}, \quad \text { RollingResistance }=F_{\text {normal }}(a+b V)
$$

in which a and b are constants. Thus

$$
F_{\text {normal }}=\frac{W_{L I M}+\text { AirDrag }}{1-(a+b V)}
$$

Therefore,

$$
\begin{equation*}
F_{\text {friction }_{f, b}}=\frac{1}{2} \mu\left[\frac{W_{L I M}+\text { AirDrag }}{1-(a+b V)}\right]\left(\psi_{L I M}-\frac{\dot{y}_{L I M_{m c}} \pm \Delta X \dot{\psi}_{L I M}-\Delta Z \dot{\phi}}{V}\right) \tag{14-9}
\end{equation*}
$$

Thus, using equations (14-5, 6), the sum of the forces on the bogie is

$$
\sum \text { Forces }=-2 k_{L I M}\left(y_{L I M m c}-y_{m c}\right)+\mu\left[\frac{W_{L I M}+\text { AirDrag }}{1-(a+b V)}\right]\left(\psi_{L I M}-\frac{\dot{y}_{L I M_{m c}}-\Delta Z \dot{\phi}}{V}\right)
$$

The sum of the yaw moments on the bogie about the LIM mass center is

$$
\sum \text { Moments }=-2 k_{L I M}\left(\psi_{L I M}-\psi\right) \Delta X^{2}-\mu\left[\frac{W_{L I M}+\text { AirDrag }}{1-(a+b V)}\right] \frac{\dot{\psi}_{L I M}}{V} \Delta X^{2}
$$

The equations of motion of the LIM bogie are

$$
\begin{aligned}
\frac{W_{L I M}}{g} \ddot{y}_{\text {LIMm }} & =\sum \text { Forces } \\
\frac{W_{L I M}}{g} r_{L I M}^{2} \ddot{\psi}_{L I M} & =\sum \text { Moments }
\end{aligned}
$$

The side force produced by the LIM bogie on the chassis is

$$
2 k_{L I M}\left(y_{L I M m c}-y_{m c}\right)
$$

The yaw moment produced by the LIM bogie on the chassis is

$$
2 k_{L I M}\left(\psi_{L I M}-\psi\right) \Delta X^{2}
$$

The roll moment produced by the LIM bogie on the chassis is

$$
2 k_{L I M}\left(y_{L I M m c}-y_{m c}\right)(-\Delta Z)
$$

15. Numerical Solution of the Equations of Motion

Each of the three second-order differential equations of Section 2 can be written in general as a pair of first-order differential equations.

$$
\begin{equation*}
\frac{d u}{d t}=f(u, t), \quad \frac{d x}{d t}=u \tag{11-1}
\end{equation*}
$$

From the paper "A Practical Method for Numerical Solution of Differential Equations" we take as the solution of equations (11-1)

$$
\begin{equation*}
u_{n+1}=u_{n}+0.5 \delta t\left(3 f_{n}-f_{n-1}\right), \quad x_{n+1}=x_{n}+0.5 \delta t\left(u_{n+1}+u_{n}\right) \tag{11-2}
\end{equation*}
$$

in which δt is preset to reduce numerical errors to an acceptable level. With use of double precision numbers, experience has shown that with a value of δt low enough to keep truncation errors to an acceptable level, round errors will be negligible.

Figure 3. The running surfaces in a diverge section of guideway. Switch rails in red.

16. Results and Discussion

Figure 3 shows the surfaces against which the side wheels run. The switch rails, as they are flared in and out, appear as red lines. Motion of the vehicle, which is calculated using the program of Appendix G, is from left to right. The object of the simulation is to determine the maximum tire loads and tire stiffnesses, and the parameters that will make 1) the lateral displacement and acceleration of the passenger acceptable and 2) the lateral displacement at the cover acceptable.

In Figure 4, motion is again from left to right. The figure shows the wheel loads, lateral displacement of the chassis at the guideway cover, and the lateral displacement of the passenger when a 500 lb passenger is displaced one seat width (20 in) to the right, i.e., in the direction that will add to the moments generated by the centrifugal force, and a wind force on the vehicle pro-
duced by a wind speed of 30 mph . The two horizontal red lines in Figure 4 correspond to a force of $\pm 2000 \mathrm{lb}$ and the two horizontal yellow lines correspond to an acceleration of 0.2 g . The long vertical white line is the point in the guideway when the vehicle mass center reaches $s=0$. The series of short vertical lines are spaced ten feet apart, and the taller vertical white line marks the point at which the vehicle mass center reaches the diverge-point junction. In the following runs, the line speed is $15.6 \mathrm{~m} / \mathrm{s}$ or 35 mph . Seven curves are shown in Figure 4: The lateral displacement at the slot at the top of the covers, the forward and rear switch forces on the left side, the forward and rear lower lateral forces on the left side, and the forward and rear upper lateral wheel forces on the right side. Table 2 gives the details of one run.

Figure 4. Tire forces and passenger acceleration.

Table 2. A Basic Set of Results
LATERAL MOTION RESULTS
Date: 11/14/2015 3:07:12 PM Computational distance step: 0.002
Positive directions: forward, left, up
Guideway design speed and vehicle speed, mi/hr 35
Tolerance, i.e., distance between tire and rail, in 0
sStart @ Diverge Junction, ft:59.25

```
sPositiveDeflection, ft:89.58
Tire stiffnesses. Main lb/in, Side lb/in^1.5
kmain: 3,000.0, kUpper: 60,000, kLower: 110,000, kSwitch: 120,000
Passenger weight, lb: 500, kSeat: 400
Vehicle weight, lb: 1200, LIM Weight: 400
MainFlareLength, ft 36, MainFlareOffSet, in 1.5
SwxFlareLength, ft 24, SwxFlareOffSet, in 1
Wind Speed, ft/s -44, Passenger Offset,in -20
Energy lost in side tires: 25%
Tire friction coefficient: 0.25
Centrifugal Force on if OnOff = 1, off if OnOff = 0, OnOff = 1
Maximum Force between LIM bogie and Chassis: 27.86 lb.
Max Roll Angle, deg: 0.054, sRollMax, ft: 65.9
Max Yaw Angle, deg: 0.072, sYawMax, ft: 56.1
Max yMC, in: 0.1, syMCMax, ft: 57.3
Deflections, inches
MaxDeflUFL 
Maximum Forces,lb
MaxForceUFL 
MaxForceSFL MaxForceSBL
    735.4 1,162.8
s at MaxForceUFR 55.4, s at MaxForceSBL 59.0
yMCAccelMax, g's MaxPassAccel, g's MaxSeatShift, in
    1.563 0.000 0.17
yCoverMax, in s at yCoverMax, ft
    0.145 57.26
UFR deflection at sStart, in: -1.446, s when UFR tire hits, ft 89.58
```

The parameters oscillate before $s=0$ because it takes about half a second for the vehicle to settle down after being suddenly struck by the side wind and the off-set passenger. The curves on the right side of $s=0$ are of significance. Detailed results of one run are tabulated in Table 2. Table 3 gives the results of a series of runs. The forces on the right side vanish as the vehicle pulls away from the right-side running surface and moves down the curved guideway. During this period, the vehicle retains its vertical position as a result of the moment developed by forces to the left on the left switch wheels and forces to the right on the lower lateral wheels on the left side of
the chassis. When the forward right upper wheel reaches the diverge junction, it impacts the flared right side of the left, or curved, guideway. This occurs in the run shown in Table 2 when the vehicles center of mass reaches $\mathrm{s}=89.6$ feet or slightly more than two seconds from $s=0$. The force on this wheel suddenly jumps to its maximum value of 1876 lb in the best set of runs in Table 3. The upper-back-right wheel, however, reaches a maximum force of only 738 lb . The force on the left-rear switch wheel peaks slightly after engagement of the upper-forward-right wheel and then vanishes in about a third of a second as vehicle support is picked up by the wheels on the right side. The discontinuities in the force curves are due to tire hysteresis produced when the deflection on the tire stops decreasing and suddenly must increase.

Table 3. Some Results of Parameter Variations

Swx	Main	k	k	k	k	El	Weight	Damping	Energy	Pass	Max	Max	Max	Max
Flare	Flare	Main	Upper	Lower	Swx	Seat	Pass	Coeff.	Loss	Offset	Y	Seat	SideTire	SwxTire
											Cover	Shift	Force	Force
ft	ft	$\mathrm{lb} / \mathrm{in}$	$\mathrm{lb} / \mathrm{in}$ ^1.5	$\mathrm{lb} / \mathrm{in}$ ^1.5	$\mathrm{lb} / \mathrm{in}$ ^1.5	$\begin{gathered} \mathrm{lb}- \\ \mathrm{in}^{\wedge} 2 \end{gathered}$	lb		\%	in	in	in	lb	lb
24	36	3000	60,000	110,000	120,000	2000	500	0.7	25	20	0.145	0.170	1876	1163
12											0.145	0.170	1876	1163
	18										0.145	0.170	1876	1163
	9										0.149	0.178	1876	1163
6											0.149	0.178	1875	1162
4											0.149	0.178	1875	1162
	5										0.145	0.172	1875	1162
	3										0.166	0.215	1875	1162
3	4										0.161	0.208	1874	1161
		6000									0.140	0.158	1809	1056
			40,000								0.134	0.148	1206	955
				100,000							0.135	0.148	1207	933
				90,000							0.137	0.149	1208	939
					110,000						0.138	0.148	1223	922
						1000					0.138	0.148	1223	922
						4000					0.138	0.148	1223	922
							200				0.142	0.154	1192	907
							50				0.143	0.158	1177	900
							500				0.141	0.152	1184	889
											0.138	0.148	1222	909
								0.5			0.138	0.148	1222	922
									10		0.147	0.160	1220	1215
									40		0.133	0.142	1223	828
									25	0	0.144	0.159	1173	898
								0.7		20	0.138	0.148	1222	922

Table 4. The Best Results.

```
LATERAL MOTION RESULTS
    Date: 11/17/2015 12:34:52 PM Computational distance step: 0.002
    Positive directions: forward, left, up
    Guideway design speed and vehicle speed, mi/hr 35
    Tolerance, i.e., distance between tire and rail, in 0
    sStart @ Diverge Junction, ft:59.25
    sPositiveDeflection, ft:65.98
    Tire stiffnesses. Main lb/in, Side lb/in^1.5
    kmain: 6,000.0, kUpper: 40,000.0, kLower: 90,000.0, kswitch: 110,000.0
    Passenger weight, lb: 500, kSeat: 400
    Vehicle weight, lb: 1200 LIM Weight: 400
    MainFlareLength, ft 4, MainFlareOffSet, in 1.5
    SwxFlareLength, ft 3, SwxFlareOffSet, in 1
    Wind Speed, ft/s -44, Passenger Offset,in -20
    Energy lost in side tires: 25%
    Tire friction coefficient: 0.25
    Centrifugal Force on if OnOff = 1, off if OnOff = 0, OnOff = 1
    Maximum Force between LIM bogie and Chassis: 27.06
Max Roll Angle, deg:0.052, sRollMax, ft: 61.5
Max Yaw Angle, deg:0.064, sYawMax, ft: 56.2
Max yMC, in:0.1, syMCMax, ft: 63.4
Deflections, in
\begin{tabular}{ccrr} 
MaxDeflUFL & MaxDeflUBL & MaxDeflLFL & MaxDeflLBL \\
0.000 & 0.000 & 0.043 & 0.037 \\
MaxDeflUFR & MaxDeflUBR & MaxDeflLFR & MaxDeflLBR \\
0.098 & 0.070 & 0.000 & 0.001 \\
MaxDeflSFL & MaxDeflSBL & & \\
0.032 & 0.041 & &
\end{tabular}
Maximum Forces,lb
MaxForceUFL MaxForceUBL MaxForceLFL MaxForceLBL
        0.0 0.0 -813.4 -635.8
    MaxForceUFR MaxForceUBR MaxForceLFR MaxForceLBR
        1,221.9 738.3 0.9 3.5
    MaxForceSFL MaxForceSBL
        640.2 922.3
    s at MaxForceUFR 55.4 s at MaxForceSBL 58.0
    yMCAccelMax, g's MaxPassAccel, g's MaxSeatShift, in
        1.018 0.000 0.148
    yCoverMax, in s at yCoverMax, ft
        0.138 63.42
    UFR deflection at sStart, in: -1.451, s when UFR tire hits, ft 65.98
```

```
    Forces at end of run,lb
    ForceUFL ForceUBL ForceLFL ForceLBL
    0.0 0.0
    ForceUFR ForceUBR
    438.0 449.8
    ForceSFL ForceSBL
0.0
    0.0
```

Table 3 reports on a series of runs aimed at finding the best values of the flare lengths and tire stiffnesses, and to note effect of changing the amount of damping and the energy loss in the tires. These are of course only sample runs and with assumed values of the vehicle weight and moments of inertia about the roll and yaw axes. The vehicle designer will correct these assumptions as well as the assumptions about placement of the wheels and other parameters and will need to make may runs to become satisfied with the parameters chosen.

Figure 5. The Vehicle Dimensioned.

Appendix A. The Equations of Motion in a Rotating Reference Frame

Figure 1 shows the reference frames used in the analysis. The reference frame x, y, z is fixed with respect to the earth and we assume for this calculation, as well as is done for many calculations of motion, that the earth's rotation is sufficiently small that the basic laws of motion are valid fixed to the earth. Let a reference frame $x^{\prime}, y^{\prime}, z^{\prime}$ move with the vehicle as it moves along a curved guideway and let it be centered in the center of the guideway. Let the x^{\prime} axis be in the local direction of the centerline of the guideway and the y^{\prime} axis be in the transverse direction to the left. In accordance with the right-hand rule an orthogonal z^{\prime} coordinate will then point upward. In this reference frame, we take the x^{\prime}-component of the velocity of the center of mass of the vehicle V to be constant. The angle between x and x^{\prime} has in Section 3 been called Ψ, which is greater than zero if the rotation of the $x^{\prime}, y^{\prime}, z^{\prime}$ reference frame is counterclockwise as shown in Figure 1, i.e., according to the right-hand rule. The vehicle has the three degrees of freedom $y_{m c}, \psi, \phi$ with respect to the reference frame $x^{\prime}, y^{\prime}, z^{\prime} . \psi$ and ϕ are positive according to the right-hand rule.

Designate as the vector \vec{R} the position of a point P fixed in the vehicle measured from the origin of the x, y, z reference frame and as the vector $\overrightarrow{R^{\prime}}$ with respect to the origin of $x^{\prime}, y^{\prime}, z^{\prime}$. Let a vector from the origin of the x, y, z frame to the origin of the $x^{\prime}, y^{\prime}, z^{\prime}$ frame be called $\overrightarrow{R_{0}}$. Then

$$
\vec{R}=\overrightarrow{R_{0}}+\overrightarrow{R^{\prime}}
$$

We will take point P as a wheel-contact point. This contact point has the fixed body coordinates x_{w}, y_{w}, z_{w} where the origin of body coordinates is at the center of the axel of the rear wheels.
The mass center of the vehicle is a distance $X_{m c}$ ahead of the origin of body coordinates and a distance $Z_{m c}$ above it. The vector \vec{R}^{\prime} can usefully be broken up into three vectors: the vector distance from the guideway center at the vehicle mass center to the vehicle mass center, the vector distance from the vehicle mass center to the origin of body coordinates, and the vector distance from the origin of body coordinates to point P. Thus

$$
\vec{R}^{\prime}=y_{m c} \hat{\jmath}^{\prime}-X_{m c} \hat{\imath}_{b}-Z_{m c} \hat{k}_{b}+x_{w} \hat{\imath}_{b}+y_{w} \hat{\jmath}_{b}+z_{w} \hat{k}_{b}
$$

in which x_{w}, y_{w}, z_{w} are the coordinates of a wheel contact point with respect to the origin of the body coordinates, i.e., the values given in Table 1.

Thus the vector from the origin of the fixed reference frame to a wheel contact point is

$$
\vec{R}=\vec{R}_{0}+y_{m c} \hat{\jmath}^{\prime}+\left(x_{w}-X_{c g}\right) \hat{\imath}_{b}+y_{w} \hat{\jmath}_{b}+\left(z_{w}-Z_{c g}\right) \hat{k}_{b}
$$

in which $\hat{\imath}, \hat{\jmath}$ will be unit vectors in the x, y reference frame, $\hat{\jmath}^{\prime}$ is a unit vector in the x^{\prime}, y^{\prime} reference frame, and the unit vectors designated by subscript ${ }_{b}$ are unit vectors in body axes.

The velocity of the mass center of the vehicle is then

$$
\vec{V}_{m c}=\frac{d \vec{R}}{d t}=V \hat{\imath}^{\prime}+\dot{y}_{m c} \hat{\jmath}^{\prime}+y_{m c} \frac{d \hat{\jmath}^{\prime}}{d t}
$$

But

$$
\frac{d \hat{l}^{\prime}}{d t}=\dot{\Psi} \hat{\jmath}^{\prime}, \quad \frac{d \hat{\jmath}^{\prime}}{d t}=-\dot{\Psi} \hat{\imath}^{\prime}
$$

Therefore,

$$
\vec{V}_{m c}=\left(V-y_{m c} \dot{\Psi}\right) \hat{\imath}^{\prime}+\dot{y}_{m c} \hat{\jmath}^{\prime}
$$

The acceleration of the mass center of the vehicle is

$$
\vec{A}_{m c}=\frac{d \vec{V}_{m c}}{d t}=V \dot{\Psi} \hat{J}^{\prime}+\ddot{y}_{m c} \hat{\jmath}^{\prime}-2 \dot{y}_{m c} \dot{\Psi} \hat{\imath}^{\prime}-y_{m c} \ddot{\Psi} \hat{\imath}^{\prime}-y_{m c} \dot{\Psi}^{2} \hat{\jmath}^{\prime}
$$

The $\hat{\jmath}^{\prime}$ component of acceleration of the mass center of the vehicle is equal to the sum of the lateral forces on the vehicle divided by the mass of the vehicle. Thus

$$
\ddot{y}_{m c}+\dot{\Psi}\left(V-y_{m c} \dot{\Psi}\right)=\frac{\sum \text { LateralForces }}{\text { GrossMass }}
$$

But $\dot{\Psi}=\frac{d \Psi}{d t}=\frac{d s}{d t} \frac{d \Psi}{d s}=V \frac{d \Psi}{d s}=\frac{V}{R}$, where R is the radius of curvature of the guideway. Thus

$$
\ddot{y}_{m c}=-\frac{V^{2}}{R}\left(1-\frac{y_{m c}}{R}\right)+\frac{\sum \text { LateralForces }}{\text { GrossMass }} \cong-\frac{V^{2}}{R}+\frac{\sum \text { LateralForces }}{\text { GrossMass }}
$$

in which the factor $\frac{y_{m c}}{R}$ is a small fraction of an inch divided by an R of upwards of 60 feet.

The lateral acceleration at the passenger level is

$$
A_{\text {passenger }}=\ddot{y}_{m c}-\ddot{\phi}\left(Z_{\text {passenger }}-Z_{c g}\right)
$$

Appendix B. Force-Deflection Relationships for Tires

Figure 1. A Deflected Tire.
Consider a wheel with an outside radius R and tire thickness t and width w. The deflection of the tire with respect to the running surface is δ. The distance from the centerline to the point at which deflection is zero is L. Then the distance D is given by

$$
D^{2}+L^{2}=R^{2}, D=\sqrt{R^{2}-L^{2}}
$$

Hence the deflection is

$$
\delta=R-D=R-\sqrt{R^{2}-L^{2}}
$$

and

$$
L^{2}=R^{2}-(R-\delta)^{2}=2 R \delta-\delta^{2}, \quad \frac{L}{R}=\sqrt{2 \frac{\delta}{R}-\frac{\delta^{2}}{R^{2}}}=\sqrt{\frac{\delta}{R}} \sqrt{2-\frac{\delta}{R}}
$$

Let an x coordinate be placed along the running surface with the origin at the center point of the wheel and a y coordinate be placed vertically along the centerline of the tire, with its origin at the running surface. In terms of these coordinates, the equation of the outer tire surface is

$$
x^{2}+(y-D)^{2}=R^{2}, \quad y=D \pm \sqrt{R^{2}-x^{2}}
$$

The plus sign corresponds to a point near the top of the tire and the minus sign, which we want, corresponds to a point near the bottom of the tire. Thus the deflection of the tire at any point is

$$
\delta(x)=-y=\sqrt{R^{2}-x^{2}}-D=\sqrt{R^{2}-x^{2}}-\sqrt{R^{2}-L^{2}}
$$

The strain ϵ at any point x is

$$
\epsilon(x)=\frac{\delta(x)}{t}
$$

The stress at the same point is

$$
\sigma(x)=E \epsilon=E \frac{\delta(x)}{t}
$$

where E is the modulus of elasticity.

If the contact surface is rectangular, as it will be if the tire is a flexible solid, the total force on the tire is

$$
\begin{gathered}
F=2 \int_{0}^{L} \sigma(x) w d x=2 \frac{E w}{t} \int_{0}^{L} \delta(x) d x=2 \frac{E w}{t} \int_{0}^{L}\left[\sqrt{R^{2}-x^{2}}-\sqrt{R^{2}-L^{2}}\right] d x \\
=2 \frac{E w}{t}\left[\frac{L}{2} \sqrt{R^{2}-L^{2}}+\frac{R^{2}}{2} \sin ^{-1}\left(\frac{L}{R}\right)-\sqrt{R^{2}-L^{2}} L\right]=\frac{E w}{t}\left[R^{2} \sin ^{-1}\left(\frac{L}{R}\right)-L \sqrt{R^{2}-L^{2}}\right] \\
=E \frac{w R^{2}}{t}\left[\sin ^{-1}\left(\frac{L}{R}\right)-\frac{L}{R} \sqrt{1-\left(\frac{L}{R}\right)^{2}}\right]
\end{gathered}
$$

where

$$
\frac{L}{R}=\sqrt{\frac{\delta}{R}} \sqrt{2-\frac{\delta}{R}}=2 \alpha^{1 / 2}(1-\alpha)^{1 / 2}
$$

where $\alpha=\delta / 2 R$.

We need to expand the function $F(\delta)$ into a power series in α. The expansion of $f(\alpha)=(1-\alpha)^{1 / 2}$ about $\alpha=0$ is Maclaurin's series and in general is given by

$$
f(x)=f(0)+f^{\prime}(0) \frac{x}{1!}+f^{\prime \prime}(0) \frac{x^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+\cdots
$$

In our case

$$
f^{\prime}=-\frac{1}{2}(1-\alpha)^{-1 / 2}, f^{\prime \prime}=-\frac{1}{4}(1-\alpha)^{-3 / 2}, f^{\prime \prime \prime}=-\frac{3}{8}(1-\alpha)^{-5 / 2}
$$

Therefore,

$$
(1-\alpha)^{1 / 2}=1-\frac{1}{2} \alpha-\frac{1}{8} \alpha^{2}-\frac{1}{16} \alpha^{3}-\cdots
$$

The series expansion of $\sin ^{-1} x$ is

$$
\sin ^{-1} x=x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\cdots
$$

Therefore

$$
\begin{gathered}
\sin ^{-1}\left(\frac{L}{R}\right) \approx 2 \alpha^{1 / 2}(1-\alpha)^{1 / 2}+\frac{4}{3} \alpha^{3 / 2}(1-\alpha)^{3 / 2} \\
\approx 2 \alpha^{1 / 2}\left(1-\frac{1}{2} \alpha-\frac{1}{8} \alpha^{2}\right)\left[1+\frac{2}{3} \alpha(1-\alpha)\right] \\
\approx 2 \alpha^{1 / 2}\left(1+\frac{1}{6} \alpha-\frac{9}{8} \alpha^{2}\right) \\
\frac{L}{R} \sqrt{1-\left(\frac{L}{R}\right)^{2}}=2 \alpha^{1 / 2}(1-\alpha)^{1 / 2} \sqrt{1-4 \alpha(1-\alpha)}=2 \alpha^{1 / 2}(1-\alpha)^{1 / 2}(1-2 \alpha) \\
\approx 2 \alpha^{1 / 2}(1-2 \alpha)\left(1-\frac{1}{2} \alpha-\frac{1}{8} \alpha^{2}\right)=2 \alpha^{1 / 2}\left(1-\frac{5}{2} \alpha+\frac{7}{8} \alpha^{2}\right) \\
F=E \frac{w R^{2}}{t} 2 \alpha^{1 / 2}\left(1+\frac{1}{6} \alpha-\frac{9}{8} \alpha^{2}-1+\frac{5}{2} \alpha-\frac{7}{8} \alpha^{2}\right)=E \frac{w R^{2}}{t} 2 \alpha^{1 / 2}\left(\frac{8}{3} \alpha-2 \alpha^{2}\right) \\
\approx \frac{16}{3} E \frac{w R^{2}}{t} \alpha^{3 / 2}=\frac{16}{3} E \frac{w R^{2}}{t}\left(\frac{\delta}{2 R}\right)^{3 / 2}=\frac{8}{3 \sqrt{2}} E \frac{w}{t} R^{1 / 2} \delta^{3 / 2}=K \delta^{3 / 2}
\end{gathered}
$$

So, we find that the force on the tire is close to proportionality to the three halves power of the deflection.

Round Pneumatic Tire

If the tire is air filled with a pressure p, the contact area is an ellipse. The length of the contact area, as calculated above, is

$$
L=\delta^{1 / 2}(2 R-\delta)^{1 / 2}
$$

With a tire of width w, the width b of the contact area, by similar analysis, is

$$
b=2 \delta^{1 / 2}(w-\delta)^{1 / 2}
$$

The area of the elliptical contact area is

$$
A=\pi L \frac{b}{2}=\pi \delta(2 R-\delta)^{1 / 2}(w-\delta)^{1 / 2} \approx \pi \delta(2 R)^{1 / 2} w^{1 / 2}
$$

The force on the tire F is the tire pressure p multiplied by the area A. Thus

$$
F=p\left[\pi \delta(2 R)^{1 / 2} w^{1 / 2}\right]=k \delta
$$

Appendix C. Energy Loss in a Tire

If the deflection $\delta>0$ the force-deflection relationship for the tires on the left side when the deflection is increasing is

$$
F=-k \delta^{1.5}
$$

in which F is the force, k is a constant and δ is the deflection. Let the maximum deflection be labeled $\delta_{\text {max }}$. When δ is decreasing assume

$$
F=-k_{r} \delta^{\beta}
$$

in which $\beta>1.5$. At the maximum deflection these forces are equal. Thus

$$
k \delta_{\max }^{1.5}=k_{r} \delta_{\max }^{\beta}
$$

So

$$
k_{r}=\frac{k}{\delta_{\max }^{\beta-1.5}}
$$

The energy lost is

$$
\Delta E=\int_{0}^{\delta_{\max }}\left(k \delta^{1.5}-k_{r} \delta^{\beta}\right) d \delta=k \frac{\delta_{\max }^{2.5}}{2.5}-k_{r} \frac{\delta_{\max }^{\beta+1}}{\beta+1}=k\left(\frac{\delta_{\max }^{2.5}}{2.5}-\frac{\delta_{\max }^{2.5}}{\beta+1}\right)
$$

Thus

$$
\frac{\Delta E}{E_{i n}}=1-\frac{2.5}{\beta+1}
$$

Hence

$$
\beta=\frac{2.5}{1-\frac{\Delta E}{E_{i n}}}-1
$$

For example, if $\frac{\Delta E}{E_{\text {in }}}=0.2$ then $\beta=2.125$. Or, if $\beta=2$ then $\frac{\Delta E}{E_{\text {in }}}=0.167$.
A program to find the force would go as follows:
Input: $\mathrm{k}, \frac{\Delta E}{E_{\text {in }}}$
Compute $\beta=\frac{2.5}{1-\frac{\Delta E}{E_{\text {in }}}}-1$

In the main program when a Defl is to be calculated, first let
DeflpreviousP = Deflprevious
Deflprevious $=$ Defl
Defl $=($ calculation formula $)$
Then the force is calculated as follows
Function Force(Defl, Deflprevious, DeflpreviousP, Deflmax)
If Defl >0 then
If Defl >= Deflprevious then
Force $=\mathrm{k} *$ Defl $^{1.5}$
Else
If Delfprevious >= DeflpreviousP then Deflmax $=$ Deflprevious (save Deflmax)
$\mathrm{kr}=\mathrm{k} /$ Deflmax ${ }^{\text {Beta-1.5 }}$
Force $=\mathrm{kr}^{*}$ Defl ${ }^{\text {Beta }}$
End if
Else
Force $=0$
End if
End Function

Appendix D. The Starting Point of the Diverge Guideways.

Figure D-1. Geometry of a curved guideway.
The y-distance from the x -axis to the point at which the flared guideways start is the point in Figure E-1 a distance c below the point 2. The distance d in Figure E-1 is the distance $D_{\text {main }}$ in Section 8. Given d and Ψ_{2}, we need to find c. The coordinates of the points 1 and 2 are

$$
\begin{gathered}
x_{1}=x_{c}+R \sin \Psi_{1}, y_{1}=y_{c}-R \cos \Psi_{1} ; x_{2}=x_{c}+R \sin \Psi_{2}, y_{2}=y_{c}-R \cos \Psi_{2} \\
c=y_{c}-R \cos \Psi_{2}-\left[y_{c}-R \cos \Psi_{1}-d \cos \Psi_{1}\right]=R\left(\cos \Psi_{1}-\cos \Psi_{2}\right)+d \cos \Psi_{1} \\
d \sin \Psi_{1}=x_{c}+R \sin \Psi_{2}-\left(x_{c}+R \sin \Psi_{1}\right)=R\left(\sin \Psi_{2}-\sin \Psi_{1}\right)
\end{gathered}
$$

Let $\Psi_{1}=\Psi_{2}-\Delta \Psi$. Then, using trigonometric identities,

$$
\begin{gathered}
c=R\left(\cos \Psi_{2} \cos \Delta \Psi+\sin \Psi_{2} \sin \Delta \Psi-\cos \Psi_{2}\right)+d\left(\cos \Psi_{2} \cos \Delta \Psi+\sin \Psi_{2} \sin \Delta \Psi\right) \\
d\left(\sin \Psi_{2} \cos \Delta \Psi-\cos \Psi_{2} \sin \Delta \Psi\right)=R\left(\sin \Psi_{2}-\sin \Psi_{2} \cos \Delta \Psi+\cos \Psi_{2} \sin \Delta \Psi\right)
\end{gathered}
$$

Solve the second of these equations for R and substitute into the first, letting $C \equiv \cos , S \equiv \operatorname{Sin}$. Then

$$
\frac{c}{d}=\left(C \Psi_{2} C \Delta \Psi+S \Psi_{2} S \Delta \Psi-C \Psi_{2}\right) \frac{\left(S \Psi_{2} C \Delta \Psi-C \Psi_{2} S \Delta \Psi\right)}{\left(S \Psi_{2}-S \Psi_{2} C \Delta \Psi+C \Psi_{2} S \Delta \Psi\right)}+C \Psi_{2} \mathrm{C} \Delta \Psi+\mathrm{S} \Psi_{2} \mathrm{~S} \Delta \Psi
$$

$$
\begin{aligned}
&=\frac{C \Psi_{2} C \Delta \Psi\left(S \Psi_{2} C \Delta \Psi-C \Psi_{2} S \Delta \Psi\right)+S \Psi_{2} S \Delta \Psi\left(S \Psi_{2} C \Delta \Psi-C \Psi_{2} S \Delta \Psi\right)}{S \Psi_{2}-S \Psi_{2} C \Delta \Psi+C \Psi_{2} S \Delta \Psi} \\
&+\frac{-S \Psi_{2} C \Delta \Psi\left(C \Psi_{2} \mathrm{C} \Delta \Psi+\mathrm{S} \Psi_{2} \mathrm{~S} \Delta \Psi\right)+\mathrm{C} \Psi_{2} S \Delta \Psi\left(C \Psi_{2} \mathrm{C} \Delta \Psi+\mathrm{S} \Psi_{2} \mathrm{~S} \Delta \Psi\right)}{S \Psi_{2}-S \Psi_{2} C \Delta \Psi+\mathrm{C} \Psi_{2} S \Delta \Psi} \\
&+\frac{-\mathrm{C} \Psi_{2}\left(S \Psi_{2} C \Delta \Psi-\mathrm{C} \Psi_{2} S \Delta \Psi\right)+S \Psi_{2}\left(C \Psi_{2} \mathrm{C} \Delta \Psi+\mathrm{S} \Psi_{2} \mathrm{~S} \Delta \Psi\right)}{S \Psi_{2}-S \Psi_{2} C \Delta \Psi+\mathrm{C} \Psi_{2} S \Delta \Psi} \\
&=\frac{1}{S \Psi_{2}(1-C \Delta \Psi)+\mathrm{C} \Psi_{2} S \Delta \Psi} \cong \frac{1}{C \Psi_{2}+\frac{S \Psi_{2} \Delta \Psi^{2}}{2 \Delta \Psi\left(1-\frac{1}{6} \Delta \Psi^{2}\right)}} \cong \frac{1}{C \Psi_{2}+\frac{1}{2} S \Psi_{2} \Delta \Psi}
\end{aligned}
$$

Note that

$$
d=R \frac{\left(\sin \Psi_{2}-\sin \Psi_{2} \cos \Delta \Psi+\cos \Psi_{2} \sin \Delta \Psi\right)}{\left(\sin \Psi_{2} \cos \Delta \Psi-\cos \Psi_{2} \sin \Delta \Psi\right)} \cong R \frac{\sin \Psi_{2} \frac{1}{2} \Delta \Psi^{2}+\cos \Psi_{2} \Delta \Psi}{\sin \Psi_{2}-\Delta \Psi \cos \Psi_{2}} \cong \frac{R \Delta \Psi}{\tan \Psi_{2}}
$$

in which $R=\frac{V^{2}}{A_{l}}$. Assume $V=13.5 \mathrm{~m} / \mathrm{s}$ and $A_{l}=0.2 \mathrm{~g}=1.96 \mathrm{~m} / \mathrm{s}^{2}$. Then $\mathrm{R}=93 \mathrm{~m}$. We take $d=$ 0.1 m . Then

$$
\Delta \Psi=\frac{d}{R} \tan \Psi_{2}=0.00108 \tan \Psi_{2}
$$

We are interested in Ψ_{2} at the point in a diverge where the inner running surfaces start. At this point, Ψ_{2} is well under 45°, hence $\Delta \Psi<0.001 \mathrm{rad}$. If Ψ_{2} were as much as 10° we have

$$
\frac{c}{d}=\frac{1}{\mathrm{C} \Psi_{2}+\frac{1}{2} S \Psi_{2} \Delta \Psi}=\frac{1}{0.985+(0.087)(0.001)} \cong \frac{1}{0.985+0.0001}
$$

Thus, we can, with little error, take

$$
c=\frac{d}{\cos \Psi_{2}},
$$

which is the result we need.

Appendix E. The Program.

```
Module InputData
    'This module inputs data needed to study the lateral dynamics of an ITNS
vehicle.
    'Units are feet, pounds, seconds
    Public Const c g As Double = 32.174 'acceleration of
gravity, ft/sec^2
    Public Const c_DegperRad As Double = 180 / Math.PI
    Public Const c_Speed As Double = 35 * (88 / 60) 'line speed, ft/s
    Public Const c_Jn As Double = c_g / 4 'comfort jerk
    Public Const c_Bank As Double = 0 'superelevation angle
    Public Const c_Al As Double = c_g / 5 'comfort lateral
acceleration
    Public Const c_J2V3 As Double = 0.5 * c_Jn / c_Speed ^ 3
    Public Const c_ChannelWidth As Double = 21 / 12 'distance between left
and right running surfaces
    Public Const c_HalfChWidth As Double = 0.5 * c_ChannelWidth
    Public Const c_SwxRailGap As Double = 4.5 / 12 }\mp@subsup{}{}{-}\mathrm{ 'distance between main
and switch running surfaces
    Public Const c_SwxFlareLength As Double = 24 'length of flared
section of swith rail
    Public Const c_MainFlareLength As Double = 36 'length of flared
section in inner rail surfaces
    Public Const c_SwxFlareOffSet As Double = 1 / 12 'offset of end of
switch flare section
    Public Const c_mainFlareOffSet As Double = 1.5 / 12 'offset of end of
main flare section
    Public Const c_VehicleWeight As Double = 1200 'l.b
    Public Const c_LIMWeight As Double = 400 'lb
    Public Const c_LIMRadiusGyration As Double = 1 'ft
    Public Const C_LIMYawInertia As Double = c_LIMWeight *
c_LIMRadiusGyration ^ 2 / c_g
    Public Const c_PassengerWeight As Double = 500 'lb
    Public Const c_PassStiffness As Double = 4800 'spring constant of
passenger suspension, lb/ft
    Public Const c_PassDamp As Double = 0.8 'dimensionless damping
constant of passenger system
    Public Const c_PassengerOffset As Double = -20 / 12 'ft
    Public Const c_YawRadiusGyration As Double = 2.5 'ft
    Public Const c_RollRadiusGyration As Double = 2.0 'ft
    Public Const c_YawInertia As Double = c_VehicleWeight *
c_YawRadiusGyration ^ 2 / c_g
    Public Const c_RollInertia As Double = c_VehicleWeight *
c_RollRadiusGyration ^ 2 / c_g
    'See paper "Deflection o\overline{f Running Surface"}
    Public Const c_Guage As Double = (22 - 2 * 3.75) / 12 'distance between
main-tire loads, ft
    Public Const c_Friction As Double = 0.25 'fraction of normal
force
    Public Const c_RadiusMainTire As Double = 0.5 * 13.25 / 12 'ft
```

Public Const c_AirDensity As Double $=0.075 \quad$ 'weight density of air, lb/ft^3

Public Const c_WindDirection As Double $=-1 \quad$ 'dimensionless
Public Const c_WindSpeed As Double $=44$ * c_WindDirection 'ft/sec
Public Const c_CdFront As Double $=0.7$
Public Const c_CdSide As Double $=0.8$
Public Const c-SideArea As Double $=40 \quad$ 'ft^2
Public Const c_FrontArea As Double $=25$ 'ft^2
Public Const C_AirDrag As Double = (c_AirDensity / 2 / c_g) * c_Speed ^ 2 * c_CdFront * c_FrontArea 'lb

Public Const c_WindForce As Double = c_WindDirection * (c_AirDensity / 2 / c_g) * c_WindSpeēed ^ 2 * c_CdSide * c_Sī̄eArea 'lb

Public Const c_Zwind As Double $=57.375 / 12$ 'ft
Public Const c_aRoad As Double $=0.005$ 'rolling resistance, dimensionless

Public Const c_bRoad As Double $=0.0005$ 'rolling resistance proportional to speed, s/m
'In these body coordinates x points forward, y points to the left, and z points upward
' $x=0$ at the rear main axle, $y=0$ at the center of the vehicle, and $z=$ 0 at the height of the main axles.

Public Const c_WB $=82 / 12 \quad$ 'the distance between
front and rear main-wheel axles
Public Const c_Xcg As Double $=0.45$ * c_WB 'x-position of cg of empty vehicle forward of rear main axle

Public Const c_Xpass As Double $=0.2$ * c_WB 'x-position of the passenger

Public Const c_Zcg As Double $=27.375 / 12 \quad$ 'z-position of $c g$ of empty vehicle above main ${ }^{-}$axle

Public Const c_Zcover As Double $=25 / 12 \quad$ 'z-position of upper edge of cover above main axle

Public Const c_Zpassenger As Double = 57 / 12 'z-position of passenger midsection above māin axle
'Positions of main side wheels from main rear axle
Public Const c_Xuf As Double = c_WB 'x-position of upper forward wheel (Wheel Base)

Public Const c_Xub As Double $=0 \quad$ 'x-position of upper back
wheel
Public Const c_Xlf As Double $=72 / 12 \quad$ 'x-position of lower forward wheel

Public Const c_Xlb As Double $=10 / 12$ 'x-position of lower back wheel

Public Const c_Yl As Double = c_HalfChWidth 'y-position of left side wheels

Public Const c_Yr As Double = -c_Yl 'y-position of right side wheels

Public Const c_Zu As Double $=21.375 / 12 \quad$ 'z-position of upper side wheels above main axle

Public Const c_Zl As Double $=-4.625 / 12 \quad$ 'z-position of lower side wheels
'Positions of switch wheels

Public Const c_Xsf As Double $=72 / 12 \quad$ 'x-position of forward switch wheels

Public Const c_Xsb As Double = $10 / 72$ 'x-position of back switch wheels

Public Const c_Ysl As Double = c_Yl - c_SwxRailGap 'y-position of left switch wheels

Public Const c_Ysr As Double = -c_Ysl 'y-position of right switch
wheels
Public Const c_Zs As Double $=10.375 / 12$ 'z-position of switch wheels
above main axle
'Positions of LIM attachments
Public Const c_XLIMf As Double $=61 / 12$ 'ft ahead of the rear axle
Public Const c_XLIMb As Double $=21 / 12$
Public Const c_Zlim As Double $=-4.625 / 12$
Public Const c_DZ As Double = c_Zlim - c_Zcg
Public Const c_DX As Double = c_XLIMf - C-WB / 2
Public Const c_kmain As Double $=3000$ * $12 \mathrm{llb/ft}$
Public Const c_kUpper As Double $=60000$ * 12 ^ 1.5 'lib/ft^1.5
Public Const c_kLower As Double $=110000$ * 12 ^ 1.5 'lib/ft^1.5
Public Const c_kswitch As Double $=120000$ * 12 ^ 1.5 'lb/ft^1.5
Public Const c_kLIM As Double $=2400 \quad \mathrm{lb} / \mathrm{ft}$
Public Const c_Lseat As Double $=17$ / 12 'seat height, ft
Public Const c_EI As Double $=400$ 'column stiffness, lb-ft^2

Public Const c_kSeat As Double = 3 * c_EI / c_Lseat ^ 3 'seat stiffness, lib/ft

Public Const c_seatDamping As Double $=0.7$
Public Const c_seatFrequencySq As Double = c_kSeat * c_g / c_PassengerWeight

Public Const c_EnergyLoss As Double $=0.25$
Public Const c_Beta As Double $=2.5 /\left(1-c _E n e r g y L o s s\right) ~-~ 1 ~$
Public Const c_Gamma As Double $=2 /\left(1-c _\right.$EnergyLoss $) ~-~ 1 ~$
Public Const c_Tolerance As Double $=0$ ' $0.0 \overline{4} / 12$ 'slop between side tire and running surface

Public Const c_sBegin As Double $=-150$
End Module
Imports System
Imports System.Diagnostics
Public Class MainForm
Public scaleX As Single $=2.5$ 'sets the size of the action on the screen
Public scaleY As Single = scaleX
Public scaleYRS As Single $=2$ * scaleY 'to expand run surface
Public scaleF As Single $=0.05 F$
Public scaleA As Single $=600$
Public scaleR As Single $=2000$
Public scaleC As Single $=5000$
Public $x 0$ As Single $=400$ 'locates the action in the x-direction
Public y0 As Single $=600$ 'locates the action in the y-direction
Public xGraph As Single 'x graph coordinate
Public yGraph As Single 'y graph coordinate

```
    Public An As Double = c_g * Math.Tan(c_Bank) + c_Al / Math.Cos(c_Bank)
'comfort horizontal accelerätion
    Public s1 As Double = c_Speed * An / c_Jn
    Public Psil As Double = 0.5 * c_Jn * s1 ^ 2 / c_Speed ^ 3
    Public y1 As Double = (1 - Psil ^ 2 / 14) * s1 * Psi1 / 3
    Public x1 As Double = (1 - Psi1 ^ 2 / 10) * s1
    Public R As Double = c Speed ^ 2 / An 'radius of curvature in
constant-curvature section
    Public xc As Double = x1 - R * Math.Sin(Psi1)
    Public yc As Double = y1 + R * Math.Cos(Psi1)
    Public Q As Double = yc - c_ChannelWidth - c_mainFlareOffSet
    Public cosThStart As Double = (Q + Math.Sqrt(Q ^ 2 - 4 * R *
C_mainFlareOffSet)) / 2 / R
    Public xStartInnerSurface As Double = xc + R * Math.Sqrt(1 - cosThStart ^
2)
    Public sStartInnerSurface As Double = s1 + R * (Math.Acos(cosThStart) -
Psi1)
    Public sMax As Double = s1 + R * (Math.PI / 4 - Psil) 'up to Psi = 45
deg
    Public sEnd As Double = sStartInnerSurface + c_MainFlareLength +
c_SwxFlareLength
    Public yLIMr As Double 'sidewise motion at rear axle of LIM bogie, m
    Public yLIMf As Double 'sidewise motion at front axle of LIM bogie, m
    Public s As Double
    Public ds As Double = 0.002
    Dim objGraphics As System.Drawing.Graphics
    Sub RunSurface()
        Dim Psi, x, y As Double
        s = c_sBegin
        objGraphics = Me.CreateGraphics
        Do
            'Left Main Running Surface
            CurvedGuideway(Psi, x, y)
            y = y + c_HalfChWidth / Math.Cos(Psi)
            xGraph = x0 + scaleX * x
            yGraph = y0 - scaleYRS * y
            objGraphics.FillEllipse(Brushes.White, xGraph, yGraph, 2, 2)
            'Right Main Running Surface
            x = S
            y = -c_HalfChWidth
            xGraph = x0 + scaleX * x
            yGraph = y0 - scaleYRS * y
            objGraphics.FillEllipse(Brushes.White, xGraph, yGraph, 2, 2)
            'Left Switch Rail Running Surface
            CurvedGuideway(Psi, x, y)
            y = y + (c_HalfChWidth - c_SwxRailGap - SwxFlare(s)) /
Math.Cos(Psi)
            xGraph = x0 + scaleX * x
            yGraph = y0 - scaleYRS * y
            If s > -c_SwxFlareLength And s <= sEnd Then
                    objGräphics.FillEllipse(Brushes.Red, xGraph, yGraph, 2, 2)
            End If
```

```
        'Right Switch Rail Running Surface
        x = s
        y = -c_HalfChWidth + c_SwxRailGap + SwxFlare(s)
        xGraph = x0 + scaleX * x
        yGraph = y0 - scaleYRS * y
    If s > -c_SwxFlareLength And s <= xStartInnerSurface +
c_MainFlareLength + c_SwxFlareLength Then
            objGraphics.FillEllipse(Brushes.Red, xGraph, yGraph, 2, 2)
        End If
            'Right Run Surface of Left Branch
            CurvedGuideway(Psi, x, y)
            y = y - (c_HalfChWidth + MainFlare(s)) / Math.Cos(Psi)
            xGraph = x\overline{0}+\mathrm{ scaleX * x}
            yGraph = y0 - scaleYRS * y
            If s >= sStartInnerSurface Then
            objGraphics.FillEllipse(Brushes.White, xGraph, yGraph, 2, 2)
            End If
            'Left Run Surface of Right Branch
            x = s
            If s >= sStartInnerSurface Then
                y = c_HalfChWidth + MainFlare(s)
            Else
            y = 0
            End If
            xGraph = x0 + scaleX * x
            yGraph = y0 - scaleYRS * y
            If x > xStartInnerSurface And y > 0 Then
                    objGraphics.FillEllipse(Brushes.White, xGraph, yGraph, 2, 2)
                    End If
            s = s + ds
    Loop Until s > sMax + 200
    objGraphics.Dispose()
    End Su.b
    Sub LateralMotion()
    Dim OnOff As Double = 1
    Dim Psi As Double
    Dim dt = ds / c_Speed
    Dim DefluFL, Def}lufR, DeflUBL, DeflUBR, DeflLFL, DeflLFR, DeflLBL
DeflLBR As Double
    Dim DeflSFL, DeflSBL As Double
    Dim DuflP, DuflPP, DufrP, DufrPP, DublP, DublPP, DubrP, DubrPP As
Double
    Dim DlflP, DlflPP, DlfrP, DlfrPP, DlblP, DlblPP, DlbrP, DlbrPP As
Double
    Dim DsflP, DsflPP, DsblP, DsblPP As Double
    Dim mfrP, mfrPP, mflP, mflPP, mbrP, mbrPP, mblP, mblPP, MaxMfr,
MaxMfl, MaxMbr, MaxMbl As Double
    Dim MaxDufl, MaxDufr, MaxDubl, MaxDubr, MaxDlfl, MaxDlfr, MaxDlbl,
MaxDlbr As Double
        Dim MaxDsfl, MaxDsbl As Double
    Dim DeflMFR, DeflMFL, DeflMBR, DeflMBL As Double
```

Dim ForceUFL, ForceUFR, ForceUBL, ForceUBR, ForceLFL, ForceLFR, ForceLBL, ForceLBR As Double

Dim ForceSFL, ForceSFR, ForceSBL, ForceSBR As Double 'Switch wheel
forces
Dim ForceMFL, ForceMFR, ForceMBL, ForceMBR As Double 'Main support tire forces.

Dim LeftSideTireForces, RightSideTireForces, SwitchTireForces As
Double
Dim SideTireForces, sideVelocity, updownCrabAngle As Double
Dim MainTireFrictionForces, FrictionF, FrictionB As Double
Dim BogieFrictionForce, BogieChassisForce As Double
Dim YawMoments, RollMoments As Double
Dim YawMuf, YawMub, YawMlf, YawMlb, YawMsf, YawMsb, YawMfriction As
Double
Dim RollMl, RollMr, RollMs, RollMmain, RollMfriction, RollMSideFriction, RollExternal As Double

Dim Switch As String 'Direction switch is thrown, Left or
Right
Dim yMCAccel As Double = $0 \quad$ Lateral acceleration of vehicle
c.g., + to left

Dim yMCAccelMax As Double = 0 'Maximum lateral acceleration.
Dim yMCAccelold As Double $=0$ 'Previous value
Dim yMCRate As Double $=0 \quad$ 'Lateral velocity of vehicle
Dim yMCRateOld As Double $=0 \quad$ 'Previous value
Dim yMC As Double $=0$
'Lateral positon of vehicle MC with
respect to guideway
Dim yMCmax As Double 'Maximum lateral motion
Dim syMCMax As Double $=0 \quad$ Value of s at yMCMax
Dim xGdwyCenter As Double 'x-coordinate of position of center
of guideway at s
Dim yGdwyCenter As Double 'y-coordinate of position of center
of guideway at s
Dim YawAccel As Double $=0 \quad$ Yaw acceleration of vehicle, +
counterclockwise
Dim YawAccelold As Double $=0$
Dim YawRate As Double $=0$
'Previous value

Dim YawRateOld As Double $=0$ 'Yaw velocity of vehicle
'Previous value
Dim Yaw As Double $=0$ 'Angle of vehicle with respect to
guideway, + to left
Dim YawMax As Double $=0 \quad$ 'Maximum yaw angle
Dim sYawMax As Double $=0 \quad$ 'Value of s at YawMax
Dim RollAccel As Double $=0 \quad$ 'Roll acceleration of vehicle, + to
right
Dim RollAccelold As Double $=0$
Dim RollRate As Double $=0$
'Previous vallue
'Roll rate of vehicle
Dim RollRateOld As Double $=0$
'Previous value
Dim Roll As Double $=0$
to guideway, + to right
Dim RollMax As Double $=0$
Dim sRollMax As Double $=0$

```
    Dim yCover As Double = 0 'Lateral movement of chassis at
position of top of guideway cover
    Dim yCoverMax As Double = 0 'Maximum value of yCover
    Dim sAtCoverMax As Double 's at yCoverMax
    Dim yPassAccel As Double = 0 'lateral acceleration of passenger
    Dim yPassAccelOld As Double = 0
    Dim yPassAccelinG As Double = 0
    Dim yPassRate As Double = 0
    Dim yPassRateOld As Double = 0
    Dim yPass As Double = 0
    Dim SeatShift As Double = 0
    Dim MaxSeatShift As Double = 0
    Dim RadFreq As Double = Math.Sqrt(c_PassStiffness * c_g /
c_PassengerWeight)
    Dim yLIMAccel As Double = 0
    Dim yLIMAccelOld As Double = 0
    Dim yLIMRate As Double = 0
    Dim yLIMRateOld As Double = 0
    Dim yLIMmc As Double = 0
    Dim YawLIMAccel As Double = 0
    Dim YawLIMAccelOld As Double = 0
    Dim YawLIMRate As Double = 0
    Dim YawLIMRateOld As Double = 0
    Dim YawLIM As Double = 0
    Dim Counter As Integer = 0
    Dim Flag As Integer = 0
    Dim sPositiveDeflection As Double 'Value of s when upper right
forward tire hits running surface.
    Dim DeflUFLmax As Double = 0 'Tire deflections
    Dim DeflUBLmax As Double = 0
    Dim DeflLFLmax As Double = 0
    Dim DeflLBLmax As Double = 0
    Dim DeflUFRmax As Double = 0
    Dim DeflUBRmax As Double = 0
    Dim DeflLFRmax As Double = 0
    Dim DeflLBRmax As Double = 0
    Dim DeflSFLmax As Double = 0
    Dim DeflSBLmax As Double = 0
    Dim ForceUFLmax As Double = 0 'Tire forces
    Dim ForceUBLmax As Double = 0
    Dim ForceLFLmax As Double = 0
    Dim ForceLBLmax As Double = 0
    Dim ForceUFRmax As Double = 0
    Dim ForceUBRmax As Double = 0
    Dim ForceLFRmax As Double = 0
    Dim ForceLBRmax As Double = 0
    Dim ForceSFLmax As Double = 0
    Dim ForceSBLmax As Double = 0
```

Dim YawLIMmoment As Double $=0$
Dim RollLIMmoment As Double $=0$
Dim BogieMoment As Double $=0$
Dim LIMNormalForceFactor As Double $=0$
Dim MaxChassisForce As Double = 0

Dim sAtMaxUFR, sAtMaxSBL As Double 'positions of maximum forces
Dim DeflUFRsStart As Double

Dim yPassAccelMax As Double $=0$
Dim MaxSeatAccel As Double $=0$
Dim startInnerSurface As Integer = scaleX * xStartInnerSurface
Dim xTire, yTire, yRail As Double
Dim textOut As New System.IO.StreamWriter("c:/Simulation
Results/LateralMotionResults.txt")
objGraphics = Me.CreateGraphics
objGraphics.DrawLine(Pens.White, $x 0,3$ * $y 0, x 0,0)$
'ordinate
objGraphics.DrawLine(Pens.White, x0 - 600, y0, x0 + 1000, y0)
'absissa
objGraphics.DrawLine(Pens.White, x0 + startInnerSurface, y0, x0 +
startInnerSurface, y0 - 250) 'marker at xStart
objGraphics.DrawLine(Pens.Yellow, x0 - 600, y0 - scaleA / 5, x0 +
1000, y0 - scaleA / 5) '0.25g line
objGraphics.DrawLine (Pens.Yellow, x0 - 600, y0 + scaleA / 5, x0 +
1000, y0 + scaleA / 5) '0.25g line
objGraphics.DrawLine (Pens.Red, x0 - 600, y0 - scaleF * 2000, x0 +
1000, y0 - scaleF * 2000) '3000 lb line
objGraphics.DrawLine (Pens.Red, x0 - 600, y0 + scaleF * 2000, x0 +
1000, y0 + scaleF * 2000) $\quad 3000$ lb line
For i $=-200$ To 400 Step 10
objGraphics.DrawLine(Pens.White, x0 + scaleX * i, y0, x0 + scaleX

* i, y0 - 10)

Next
objGraphics.DrawString(" y At Cover ", Me.Font,
System.Drawing.Brushes.White, 300, 0)
objGraphics.DrawString(" y Seat Acceleration ", Me.Font,
System. Drawing.Brushes.Thistle, 300, 20)
objGraphics.DrawString(" y Passenger Acceleration ", Me.Font, System. Drawing.Brushes.Yellow, 300, 40)
objGraphics.DrawString(" Force Swx Front Left ", Me.Font, System.Drawing.Brushes.Red, 300, 60)
objGraphics.DrawString(" Force Swx Back Left ", Me.Font,
System.Drawing.Brushes.Pink, 300, 80)
objGraphics.DrawString(" Force Upper Forward Right ", Me.Font, System. Drawing.Brushes.Orange, 300, 100)
objGraphics.DrawString(" Force Upper Back Right ", Me.Font, System.Drawing.Brushes.GreenYellow, 300, 120)
objGraphics.DrawString(" Force Lower Forward Left ", Me.Font, System.Drawing.Brushes.Turquoise, 300, 140)
objGraphics.DrawString(" Force Lower Back Left ", Me.Font, System.Drawing.Brushes.Wheat, 300, 160)
objGraphics.DrawString(" Roll ", Me.Font, System.Drawing.Brushes.PaleVioletRed, 300, 180)
objGraphics.DrawString(" Horizontal Red Lines are at 2000 lb ", Me.Font, System.Drawing.Brushes.Red, 700, 20)
objGraphics.DrawString(" Horizontal Yellow Lines are at 0.2 g ", Me.Font, System.Drawing.Brushes.Yellow, 700, 40)
objGraphics.DrawString(" Closely spaced short vertical lines are 10 ft apart ", Me.Font, System.Drawing.Brushes.White, 700, 60)
objGraphics.DrawString(" Single vertical line marks xStart", Me.Font, System. Drawing.Brushes.White, 700, 80)
objGraphics.DrawString(" Single top-to-bottom vertical line marks $s=$ 0", Me.Font, System.Drawing.Brushes.White, 700, 100)

Switch = "Left" 'following code based on switching left as worst
case $s=c _s B e g i n$

Do
CurvedGuideway(Psi, xGdwyCenter, yGdwyCenter)
'Tire deflections:
'Upper front left tire
yTire = yGdwyCenter + yTireLocal(Psi, yMC, Yaw, Roll, c_Xuf,
C_Yl, C_Zu)
xTire = xGdwyCenter + xTireLocal(Psi, yMC, Yaw, Roll, c_Xuf, c_Yl, c_Zu)
yRail = yCL(xTire) + c_HalfChWidth / cosPsi(xTire) - c_Tolerance
DuflPP = DuflP
Duflp = DefluFL
DeflUFL $=(y T i r e ~-~ y R a i l) ~ * ~ c o s P s i(x T i r e) ~ ' 0 ~ i f ~<~ 0 ~$
'Upper back left tire
yTire = yGdwyCenter + yTireLocal(Psi, yMC, Yaw, Roll, c_Xub,
c_Yl, c_Zu)
xTire = xGdwyCenter + xTireLocal(Psi, yMC, Yaw, Roll, c_Xub, c_Yl, c_Zu)

DublPP = DublP
DublP = DeflUBL
DeflubL $=(y T i r e ~-~ y R a i l) ~ * ~ c o s P s i(x T i r e) ~ ' 0 ~ i f ~<~ 0 ~$
'Lower front left tire
yTire = yGdwyCenter + yTireLocal(Psi, yMC, Yaw, Roll, c_Xlf,
C_Yl, C_Zl)
xTire $=$ xGdwyCenter + xTireLocal(Psi, yMC, Yaw, Roll, c_Xlf,
c_Yl, c_Zl)
yRail = yCL(xTire) + c_HalfChWidth / cosPsi(xTire) - c_Tolerance
DlflPP = DlflP
DlflP = DeflLFL

'Lower back left tire
yTire $=$ yGdwyCenter + yTireLocal(Psi, yMC, Yaw, Roll, c_Xlb,
c_Yl, c_Zl)

```
    xTire = xGdwyCenter + xTireLocal(Psi, yMC, Yaw, Roll, c_Xlb,
c_Yl, c_Zl)
    yRail = yCL(xTire) + c_HalfChWidth / cosPsi(xTire) - c_Tolerance
    DlblPP = DlblP
    DlblP = DeflLBL
    DeflLBL = (yTire - yRail) * cosPsi(xTire) '0 if < 0
    'Upper front right tire
    yTire = yGdwyCenter + yTireLocal(Psi, yMC, Yaw, Roll, c_Xuf,
c_Yr, c_Zu)
    xTire = xGdwyCenter + xTireLocal(Psi, yMC, Yaw, Roll, c_Xuf,
c_Yr, c_Zu)
    If xTire < xStartInnerSurface Then
        yRail = -c_HalfChWidth + c_Tolerance
    Else
        yRail = yc - R * cosPsi(xTire) - (c_HalfChWidth +
MainFlare(s)) / cosPsi(xTire) + c_Tolerance
    End If
    DufrPP = DufrP
    DufrP = DeflUFR
    DeflUFR = (yRail - yTire) * cosPsi(xTire)
    If s >= sStartInnerSurface And s < sStartInnerSurface + ds Then
        DeflUFRsStart = DeflUFR
    End If
    If s > sStartInnerSurface And DeflUFR > 0 And Flag = 0 Then
        sPositiveDeflection = s + c_Xuf - c_Xcg
        Flag = 1
    End If
    'Upper back right tire
    yTire = yGdwyCenter + yTireLocal(Psi, yMC, Yaw, Roll, c_Xub,
c_Yr, c_Zu)
    xTire = xGdwyCenter + xTireLocal(Psi, yMC, Yaw, Roll, c_Xub,
c_Yr, c_Zu)
    If xTire < xStartInnerSurface Then
        yRail = -c_HalfChWidth + c_Tolerance
    Else
        yRail = yc - R * cosPsi(xTire) - (c_HalfChWidth +
MainFlare(s)) / cosPsi(xTire) + c_Tolerance
    End If
    DubrPP = DubrP
    DubrP = DeflUBR
    DeflUBR = (yRail - yTire) * cosPsi(xTire)
    'Lower front right tire
    yTire = yGdwyCenter + yTireLocal(Psi, yMC, Yaw, Roll, c_Xlf,
c_Yr, c_Zl)
    xTire = xGdwyCenter + xTireLocal(Psi, yMC, Yaw, Roll, c_Xlf,
c_Yr, c_Zl)
    If xTire < xStartInnerSurface Then
    yRail = -c_HalfChWidth + c_Tolerance
    Else
        yRail = yc - R * cosPsi(xTire) - (c_HalfChWidth +
MainFlare(s)) / cosPsi(xTire) + c_Tolerance
    End If
    DlfrPP = DlfrP
    DlfrP = DeflLFR
```

```
    DeflLFR = (yRail - yTire) * cosPsi(xTire)
    'Lower back right tire
    yTire = yGdwyCenter + yTireLocal(Psi, yMC, Yaw, Roll, c_Xlb,
c_Yr, c_Zl)
    xTire = xGdwyCenter + xTireLocal(Psi, yMC, Yaw, Roll, c_Xlb,
c_Yr, c_Zl)
    If xTire < xStartInnerSurface Then
        yRail = -c_HalfChWidth + c_Tolerance
    Else
        yRail = yc - R * cosPsi(xTire) - (c_HalfChWidth +
MainFlare(s)) / cosPsi(xTire) + c_Tolerance
    End If
    DlbrPP = DlbrP
    DlbrP = DeflLBR
    DeflLBR = (yRail - yTire) * cosPsi(xTire)
    'Switch front left tire
        If s >= -c_SwxFlareLength And s < sEnd Then
        yTire = yGdwyCenter + yTireLocal(Psi, yMC, Yaw, Roll, c_Xsf,
c_Ysl, c_Zs)
C_Ysl, c_Zs)
    xTire = xGdwyCenter + xTireLocal(Psi, yMC, Yaw, Roll, c_Xsf,
    yRail = yCL(xTire) + (c_HalfChWidth - c_SwxRailGap -
SwxFlare(s)) / cosPsi(xTire) + c_Tolerañce
    DsflPP = DsflP
    DsflP = DeflSFL
    DeflSFL = (yRail - yTire) * cosPsi(xTire)
    Else
        DeflSFL = 0
    End If
    'Switch back left tire
    If s >= -c SwxFlareLength And s < sEnd Then
        yTire = yGdwyCenter + yTireLocal(Psi, yMC, Yaw, Roll, c_Xsb,
c_Ysl, c_Zs)
        xTire = xGdwyCenter + xTireLocal(Psi, yMC, Yaw, Roll, c_Xsb,
c_Ysl, c_Zs)
        yRail = yCL(xTire) + (c_HalfChWidth - c_SwxRailGap -
SwxFlare(s)) / cosPsi(xTire) + c_Tolerance
        DsblPP = Ds.blP
        DsblP = DeflSBL
        DeflSBL = (yRail - yTire) * cosPsi(xTire)
Else
    DeflSBL = 0
End If
If s > 0 Then
    If DeflUFL > DeflUFLmax Then DeflUFLmax = DeflUFL
    If DeflUBL > DeflUBLmax Then DeflUBLmax = DeflUBL
    If DeflLFL > DeflLFLmax Then DeflLFLmax = DeflLFL
    If DeflLBL > DeflLBLmax Then DeflLBLmax = DeflLBL
    If DeflUFR > DeflUFRmax Then DeflUFRmax = DeflUFR
    If DeflUBR > DeflUBRmax Then DeflUBRmax = DeflUBR
    If DeflLFR > DeflLFRmax Then DeflLFRmax = DeflLFR
    If DeflLBR > DeflLBRmax Then DeflLBRmax = DeflLBR
```

```
        If DeflSFL > DeflSFLmax Then DeflSFLmax = DeflSFL
            If DeflSBL > DeflSBLmax Then DeflSBLmax = DeflSBL
    End If
    'Main Vehicle-Support Tire deflections
    'Deflection of front right tire
    DeflMFR = 0.5 * c_g * ((c_VehicleWeight * c_Xcg +
c_PassengerWeight * c_Xpass) / c_WB / c_kmain + c_Guage * Roll)
    'Deflection of front left tire
    DeflMFL = 0.5 * c_g * ((c_VehicleWeight * c_Xcg +
C_PassengerWeight * c_Xpass) / c_WB / C_kmain - c_Guage * Roll)
    'Defection of back rīight tiře
    DeflMBR = 0.5 * c_g * ((c_VehicleWeight * (c_WB - c_Xcg) +
c_PassengerWeight * (c_WB - c_Xpass)) / c_WB / c_kmain + c_Guage * Roll)
    'Defection of back left tire
    DeflMBL = 0.5 * c_g * ((c_VehicleWeight * (c_WB - c_Xcg) +
c_PassengerWeight * (c WB - c-Xpass)) / c_WB / c_kmain -- c_Guage * Roll)
    'Side Tire forces on the vehicle, left -, right +
    If DeflUFL > O Then 'Upper forward left
        ForceUFL = -SideTireForce(c_kUpper, DeflUFL, DuflP, DuflPP,
MaxDufl)
    Else
        ForceUFL = 0
    End If
    If DeflUBL > 0 Then 'Upper back left
        ForceUBL = -SideTireForce(c_kUpper, DeflUBL, DublP, DublPP,
MaxDubl)
    Else
        ForceUBL = 0
    End If
    If DeflLFL > O Then 'Lower forward left
        ForceLFL = -SideTireForce(c_kLower, DeflLFL, DlflP, DlflPP,
MaxDlfl)
    Else
        ForceLFL = 0
    End If
    If DeflLBL > 0 Then 'Lower back left
        ForceLBL = -SideTireForce(c_kLower, DeflLBL, DlblP, DlblPP,
MaxDlbl)
    Else
        ForceLBL = 0
    End If
    If DeflUFR > 0 Then 'Upper forward right
        ForceUFR = SideTireForce(c_kUpper, DeflUFR, DufrP, DufrPP,
MaxDufr)
    Else
        ForceUFR = 0
    End If
    If DeflUBR > 0 Then 'Upper back right
```

```
    ForceUBR = SideTireForce(c_kUpper, DeflUBR, DubrP, DubrPP,
```

MaxDubr)
Else
ForceUBR = 0
End If
If DeflLFR > 0 Then 'Lower forward right
ForceLFR = SideTireForce(c_kLower, DeflLFR, DlfrP, DlfrPp,
MaxDlfr)
Else
ForceLFR = 0
End If
If Defllbr > 0 Then 'Lower back right
ForceLBR = SideTireForce (c_kLower, DeflLBR, DlbrP, DlbrPP,
MaxDlbr)
Else
ForceLBR $=0$
End If
'Switch Tire Forces, Left +, Right -
If DeflSFL > 0 Then 'Switch forward left
ForceSFL = SideTireForce(c_kswitch, DeflSFL, Dsfle, DsflPP,
MaxDsfl)
Else
ForceSFL = 0
End If
If DeflSBL > 0 Then 'Switch back left
ForceSBL = SideTireForce(c_kswitch, DeflSBL, DsblP, DsblPP,
MaxDsbl)
Else
ForceSBL $=0$
End If
If s >= -c_SwxFlareLength Then
If ForceUFL < ForceUFLmax Then ForceUFLmax = ForceUFL
If ForceUBL < ForceUBLmax Then ForceUBLmax $=$ ForceUBL
If ForceLFL < ForceLFLmax Then ForceLFLmax = ForceLFL
If ForceLBL < ForceLBLmax Then ForceLBLmax = ForceLBL
If ForceUFR > ForceUFRmax Then
ForceUFRmax = ForceUFR
sAtMaxUFR = s
End If
If ForceUBR > ForceUBRmax Then ForceUBRmax = ForceUBR
If ForceLFR > ForceLFRmax Then ForceLFRmax = ForceLFR
If ForceLBR > ForceLBRmax Then ForceLBRmax = ForceLBR
If ForceSFL > ForceSFLmax Then ForceSFLmax = ForceSFL
If ForceSBL > ForceSBLmax Then
ForceSBLmax = ForceSBL
sAtMaxSBL $=s$
End If
End If
'Main Tire Forces

```
    ForceMFL = MainTireForce(c_kmain, DeflMFL, mflP, mflPP, MaxMfl)
    ForceMFR = MainTireForce(c-kmain, DeflMFR, mfrP, mfrPP, MaxMfr)
    ForceMBL = MainTireForce(c_kmain, DeflMBL, mblP, mblPP, MaxMbl)
    ForceMBR = MainTireForce(c_kmain, DeflMBR, mbrP, mbrPP, MaxMbr)
    'Forward Main Tire Friction Forces
    sideVelocity = yMCRate + YawRate * (c_Xuf - c_Xcg) + RollRate *
(c_Zcg + c_RadiusMainTire)
    FrictionF = -c_Friction * (ForceMFL + ForceMFR) * (sideVelocity /
c_Speed + Yaw)
    'Back Main Tire Friction Forces
    sideVelocity = yMCRate + YawRate * (c_Xub - c_Xcg) + RollRate *
(c_Zcg + c_RadiusMainTire)
    FrictionB = -c_Friction * (ForceMBL + ForceMBR) * (sideVelocity /
c_Speed + Yaw)
    'Side Tire Friction Forces roll the vehicle
    updownCrabAngle = c_HalfChWidth * RollRate / c_Speed
    LeftSideTireForces = ForceUFL + ForceUBL + ForceLFL + ForceLBL
    RightSideTireForces = ForceUFR + ForceUBR + ForceLFR + ForceLBR
    RollMSideFriction = -c_HalfChWidth * c_Friction * updownCrabAngle
* (LeftSideTireForces + RightSideTireForces)
    'Forces on LIM Bogie
    LIMNormalForceFactor = c_Friction * (c_LIMWeight + C_AirDrag) /
(1 - c_aRoad - c__bRoad * c_Speed)
    Bogi\overline{eFrictionFōrce = LIMNormalForceFactor * (YawLIM - (yLIMRate -}
C_DZ * RollRate) / c_Speed)
    BogieChassisForce = -2 * c_kLIM * (yLIMmc - yMC)
    BogieMoment = - (2 * c_kLIM * (YawLIM - Yaw) +
LIMNormalForceFactor * YawLIMRate / c_Speed) * c_DX ^ 2
    If Math.Abs(BogieChassisForce) > Max\overline{ChassisForce Then}
MaxChassisForce = Math.Abs(BogieChassisForce)
    'Equations of motion
    SwitchTireForces = ForceSFL + ForceSBL + ForceSFR + ForceSBR
    SideTireForces = LeftSideTireForces + RightSideTireForces +
SwitchTireForces
    MainTireFrictionForces = FrictionF + FrictionB
    yMCAccelOld = yMCAccel
    yMCAccel = -c_Speed ^ 2 * Curvature() * OnOff
    yMCAccel = yMCACcel + (SideTireForces + MainTireFrictionForces +
C_WindForce - BogieChassisForce) * c_g / c_VehicleWeight
    If s > 0 And Math.Abs(yM\overline{CAccel)}>> yMCAccelMax Then yMCAccelMax =
Math.Abs(yMCAccel)
    yMCRateOld = yMCRate
    yMCRate = yMCRate + 0.5 * dt * (3 * yMCAccel - yMCAccelOld)
    yMC = yMC + 0.5 * dt * (yMCRate + yMCRateOld)
    If s > 0 And Math.Abs(yMCAccel) > yMCAccelMax Then yMCAccelMax =
Math.Abs(yMCAccel)
    If s > 0 And Math.Abs(yMC) > yMCmax Then
        yMCmax = Math.Abs(yMC)
        syMCMax = s
    End If
```

```
    YawMuf = (ForceUFR + ForceUFL) * (c_Xuf - c_Xcg)
    YawMub = (ForceUBR + ForceUBL) * (c_Xub - c_Xcg)
    YawMlf = (ForceLFR + ForceLFL) * (c_Xlf - c_Xcg)
    YawMlb = (ForceLBR + ForceLBL) * (c_Xlb - c_Xcg)
    YawMsf = (ForceSFR + ForceSFL) * (c_Xsf - c_Xcg)
    YawMsb = (ForceSBR + ForceSBL) * (c_Xsb - c_Xcg)
    YawMfriction = FrictionF * (c_Xuf - c_Xcg) - FrictionB * (c_Xub -
c_Xcg)
    YawLIMmoment = 2 * c_kLIM * (YawLIM - Yaw) * c_DX ^ 2
    YawMoments = YawMuf + YawMub + YawMlf + YawMlb + YawMsf + YawMsb
+ YawMfriction + YawLIMmoment
    YawAccelOld = YawAccel
    YawAccel = YawMoments / c_YawInertia
    YawRateOld = YawRate
    YawRate = YawRate + 0.5 * dt * (3 * YawAccel - YawAccelOld)
    Yaw = Yaw + 0.5 * dt * (YawRate + YawRateOld)
    If s > 0 And Math.Abs(Yaw) > YawMax Then
            YawMax = Math.Abs(Yaw)
            sYawMax = s
    End If
    RollMl = (ForceUFL + ForceUBL) * (c_Zcg - c_Zu) + (ForceLFL +
ForceLBL) * (c Zcg - c Zl)
```



```
ForceLBR) * (c_Zcg - c_Zl)
    RollMs = SwitchTireForces * (c_Zcg - c_Zs)
    RollMmain = (ForceMFL - ForceMFR + ForceMBL - ForceMBR) * c_Guage
/ 2
    RollMfriction = MainTireFrictionForces * (c_Zcg +
c_RadiusMainTire)
    RollExternal = -c_WindForce * (c_Zwind - c_Zcg) -
c_PassengerWeight * c_PassengerOffset
    RollLIMmoment = -BogieChassisForce * c_DZ
    RollMoments = RollMl + RollMr + RollMs + RollMmain +
RollMfriction + RollMSideFriction + RollExternal + RollLIMmoment
    RollAccelOld = RollAccel
    RollAccel = RollMoments / c_RollInertia
    RollRateOld = RollRate
    RollRate = RollRate + 0.5 * dt * (3 * RollAccel - RollAccelold)
    Roll = Roll + 0.5 * dt * (RollRate + RollRateOld)
    If s > 0 And Math.Abs(Roll) > RollMax Then
                RollMax = Math.Abs(Roll)
                sRollMax = s
    End If
    yCover = yMC + (c_Zcg - c_Zcover) * Roll
    If s >= 0 And Math.Abs(yCover) > yCoverMax Then
                yCoverMax = Math.Abs(yCover)
            sAtCoverMax = s
    End If
    yPassAccelOld = yPassAccel
    yPassAccel = -c_seatFrequencySq * (yMC - (c_Zpassenger - c_Zcg) *
Roll) - 2 * c_seatDamping * Math.Sqrt(c_seatFrequencySq) * yPassRate
    yPassRateOld = yPassRate
    yPassRate = yPassRate + 0.5 * dt * (3 * yPassAccel -
yPassAccelOld)
```

```
    yPass = yPass + 0.5 * dt * (yPassRate + yPassRateOld)
    SeatShift = yPass - yMC + (c Zpassenger - c Zcg) * Roll
    If s > 0 And Math.Abs(SeatShift) > MaxSeatShift Then MaxSeatShift
= Math.Abs(SeatShift)
    If s > O And Math.Abs(yPassAccel) > yPassAccelMax Then
yPassAccelMax = Math.Abs(yPassAccel)
    yLIMAccelOld = yLIMAccel
    yLIMAccel = (BogieChassisForce + BogieFrictionForce) * c_g /
c_LIMWeight
    yLIMRateOld = yLIMRate
    yLIMRate = yLIMRate + 0.5 * dt * (3 * yLIMAccel - yLIMAccelOld)
    yLIMmc = yLIMmc + 0.5 * dt * (yLIMRate + yLIMRateOld)
    YawLIMAccelOld = YawLIMAccel
    YawLIMAccel = BogieMoment / c_LIMYawInertia
    YawLIMRateOld = YawLIMRate
    YawLIMRate = YawLIMRate + 0.5 * dt * (3 * YawLIMAccel -
YawLIMAccelOld)
    YawLIM = YawLIM + 0.5 * dt * (YawLIMRate + YawLIMRateOld)
    xGraph = x0 + scaleX * s
    yGraph = y0 - scaleC * yCover
    objGraphics.FillEllipse(Brushes.White, xGraph, yGraph, 2, 2)
    yGraph = y0 - scaleA * yMCAccel / c g
    'objGraphics.FillEllipse(Brushes.Gold, xGraph, yGraph, 2, 2)
    yGraph = y0 - scaleC * SeatShift / c_g
    objGraphics.FillEllipse(Brushes.Green, xGraph, yGraph, 2, 2)
    yGraph = y0 - scaleA * yPassAccel / c_g
    'objGraphics.FillEllipse(Brushes.Yellow, xGraph, yGraph, 2, 2)
    yGraph = y0 - scaleF * ForceLFL
    'objGraphics.FillEllipse(Brushes.Turquoise, xGraph, yGraph, 2, 2)
'LFL
    yGraph = y0 - scaleF * ForceLBL
    'objGraphics.FillEllipse(Brushes.Wheat, xGraph, yGraph, 2, 2)
'LBL
    yGraph = y0 - scaleF * ForceUFL
    'objGraphics.FillEllipse(Brushes.Gold, xGraph, yGraph, 2, 2)
'UFL
    yGraph = y0 - scaleF * ForceUBL
    'objGraphics.FillEllipse(Brushes.LightCyan, xGraph, yGraph, 2, 2)
'UBL
    yGraph = y0 - scaleF * ForceLBR
    'objGraphics.FillEllipse(Brushes.Violet, xGraph, yGraph, 2, 2)
'LBR
    yGraph = y0 - scaleF * ForceLFR
    'objGraphics.FillEllipse(Brushes.Teal, xGraph, yGraph, 2, 2)
'LFR
    yGraph = y0 - scaleF * ForceUFR
    'objGraphics.FillEllipse(Brushes.Orange, xGraph, yGraph, 2, 2)
'UFR
    yGraph = y0 - scaleF * ForceUBR
    'objGraphics.FillEllipse(Brushes.GreenYellow, xGraph, yGraph, 2,
2) 'UBR
        yGraph = y0 - scaleF * ForceSFL
    'objGraphics.FillEllipse(Brushes.Red, xGraph, yGraph, 2, 2)
'SFL
```

```
        yGraph = y0 - scaleF * ForceSBL
        'objGraphics.FillEllipse(Brushes.Pink, xGraph, yGraph, 2, 2)
'SBL
            yGraph = y0 - scaleR * Roll
                            'objGraphics.FillEllipse(Brushes.PaleVioletRed, xGraph, yGraph,
2, 2) 'Roll
        yGraph = y0 - scaleR * Yaw
        'objGraphics.FillEllipse(Brushes.Teal, xGraph, yGraph, 2, 2)
'Yaw
        yGraph = y0 - scaleR * yMC
        'objGraphics.FillEllipse(Brushes.Salmon, xGraph, yGraph, 2, 2)
'yMC
        yGraph = y0 - 10 * scaleR * DeflUFR
        If DeflUFR > 0 Then
                'objGraphics.FillEllipse(Brushes.Red, xGraph, yGraph, 2, 2)
' yMC
            End If
        s = s + ds
        Loop Until s > sMax + 50
        textOut.WriteLine(" LATERAL MOTION RESULTS")
        textOut.WriteLine(" Date: " & Date.Now & " Computational distance
step: " & ds)
        textOut.WriteLine(" Positive directions: forward, left, up")
        textOut.WriteLine(" Guideway design speed and vehicle speed, mi/hr "
& c_Speed * 15 / 22)
        textOut.WriteLine(" Tolerance, i.e., distance between tire and rail,
in " & c_Tolerance * 12)
        TextOut.WriteLine(" sStart @ Diverge Junction, ft:" &
FormatNumber(sStartInnerSurface, 2))
        textOut.WriteLine(" sPositiveDeflection, ft:" &
FormatNumber(sPositiveDeflection, 2))
        textOut.WriteLine(" Tire stiffnesses. Main lb/in, Side lb/in^1.5")
        textOut.WriteLine(" kmain: " & FormatNumber(c kmain / 12, 1) & ",
kUpper: " & FormatNumber(c_kUpper / 12 ^ 1.5, 1) & ", kLower: " &
FormatNumber(c_kLower / 12`^ 1.5, 1) & ", kswitch: " & FormatNumber(c_kswitch
/ 12 ^ 1.5, 1))
        textOut.WriteLine(" Passenger weight, lb: " & c_PassengerWeight & ",
kSeat: " & c PassStiffness / 12)
        textŌut.WriteLine(" Vehicle weight, lb: " & c_VehicleWeight & " LIM
Weight: " & c_LIMWeight)
        textOut.WriteLine(" MainFlareLength, ft " & c_MainFlareLength & ",
MainFlareOffSet, in " & c_mainFlareOffSet * 12)
        textOut.WriteLine\overline{(" SwxFlareLength, ft " & C_SwxFlareLength & ",}
SwxFlareOffSet, in " & c SwxFlareOffSet * 12)
        textOut.WriteLinē(" Wind Speed, ft/s " & c_WindSpeed & ", Passenger
Offset,in " & c_PassengerOffset * 12)
        textOut.WriteLine(" Energy lost in side tires: " & c_EnergyLoss * 100
& "%")
        textOut.WriteLine(" Tire friction coefficient: " & c Friction)
        textOut.WriteLine(" Centrifugal Force on if OnOff = \overline{1}}\mathrm{ , off if OnOff =
0, OnOff = " & OnOff)
        textOut.WriteLine(" Maximum Force between LIM bogie and Chassis: " &
FormatNumber(MaxChassisForce, 2))
        textOut.WriteLine()
        textOut.WriteLine(" Max Roll Angle, deg:" & FormatNumber(RollMax *
c_DegperRad, 3) & ", sRollMax, ft: " & FormatNumber(sRollMax, 1))
```

```
    textOut.WriteLine(" Max Yaw Angle, deg:" & FormatNumber(YawMax *
c DegperRad, 3) & ", sYawMax, ft: " & FormatNumber(sYawMax, 1))
    textOut.WriteLine(" Max yMC, in:" & FormatNumber(yMCmax * 12, 1) & ",
syMCMax, ft: " & FormatNumber(syMCMax, 1))
    textOut.WriteLine()
    textOut.WriteLine(" Deflections, in")
    textOut.WriteLine(" MaxDeflUFL MaxDeflUBL MaxDeflLFL
MaxDeflLBL ")
    textOut.WriteLine(" " & FormatNumber(DeflUFLmax * 12, 3) & "
" & FormatNumber(DeflUBLmax * 12, 3) & " " &
FormatNumber(DeflLFLmax * 12, 3) & " " & FormatNumber(DeflLBLmax *
12, 3))
    textOut.WriteLine(" MaxDeflUFR MaxDeflUBR MaxDeflLFR
MaxDeflLBR ")
    textOut.WriteLine(" " & FormatNumber(DeflUFRmax * 12, 3) & "
" & FormatNumber(DeflUBRmax * 12, 3) & " " &
FormatNumber(DeflLFRmax * 12, 3) & " " & FormatNumber(DeflLBRmax *
12, 3))
    textOut.WriteLine(" MaxDeflSFL MaxDeflSBL ")
    textOut.WriteLine(" " & FormatNumber(DeflSFLmax * 12, 3) & "
" & FormatNumber(DeflSBLmax * 12, 3))
    textOut.WriteLine()
    textOut.WriteLine(" Maximum Forces,lb")
    textOut.WriteLine(" MaxForceUFL MaxForceUBL MaxForceLFL
MaxForceLBL ")
    textOut.WriteLine(" " & FormatNumber(ForceUFLmax, 1) & "
" & FormatNumber(ForceUBLmax, 1) & " " & FormatNumber(ForceLFLmax,
1) & " " & FormatNumber(ForceLBLmax, 1))
    textOut.WriteLine(" MaxForceUFR MaxForceUBR MaxForceLFR
MaxForceLBR ")
    textOut.WriteLine(" " & FormatNumber(ForceUFRmax, 1) & "
" & FormatNumber(ForceUBRmax, 1) & " " & FormatNumber(ForceLFRmax,
1) & " " & FormatNumber(ForceLBRmax, 1))
    textOut.WriteLine(" MaxForceSFL MaxForceSBL ")
    textOut.WriteLine(" " & FormatNumber(ForceSFLmax, 1) & "
" & FormatNumber(ForceSBLmax, 1))
    textOut.WriteLine()
    textOut.WriteLine(" s at MaxForceUFR " & FormatNumber(sAtMaxUFR, 1) &
" s at MaxForceSBL " & FormatNumber(sAtMaxSBL, 1))
    textOut.WriteLine()
    textOut.WriteLine(" yMCAccelMax, g's MaxPassAccel, g's
MaxSeatShift, in")
    textOut.WriteLine(" " & FormatNumber(yMCAccelMax / c_g, 3) & "
" & FormatNumber(yPassAccelMax / c_g, 3) & " " &
FormatNumber(MaxSeatShift * 12, 2))
    textOut.WriteLine(" yCoverMax, in s at yCoverMax, ft")
    textOut.WriteLine(" " & FormatNumber(yCoverMax * 12, 3) & "
" & FormatNumber(sAtCoverMax, 2))
    textOut.WriteLine(" UFR deflection at sStart, in: " &
FormatNumber(DeflUFRsStart * 12, 3) & ", s when UFR tire hits, ft " &
FormatNumber(sPositiveDeflection, 2))
    textOut.WriteLine()
    textOut.Close()
    objGraphics.Dispose()
    End Sub
```

Sub CurvedGuideway (ByRef Psi As Double, ByRef x As Double, ByRef y As Dou.ble)

If $s<0$ Then
$x=s$
$y=0$
Psi $=0$
Elself s < sl Then
Psi $=0.5$ * c_Jn * s ^ $2 /$ c_Speed $^{\wedge} 3$
$x=s *(1-\bar{P} s i \wedge 2 / 10)$
$y=s$ * Psi / 3 * (1 - Psi ^ 2 / 14)
Else
Psi $=$ Psil $+(s-s 1) / R$
$x=x C+R *$ Math.Sin(Psi)
$y=y c-R *$ Math. Cos(Psi)
End If
End Sub
Function SwxFlare(ByVal s As Double) As Double
Dim y As Double $=0$
If s >= -c_SwxFlareLength And $s<0$ Then $y=c _$SwxFlareOffSet * (s / c_SwxFlareLength) ^ 2
ElseIf $s>=0$ And $s<s S t a r t I n n e r S u r f a c e+c _M a i n F l a r e L e n g t h ~ T h e n ~$ $y=0$
ElseIf $\mathrm{s}>=$ sStartInnerSurface + c_MainFlareLength And $\mathrm{s}<$ sEnd Then y = c_SwxFlareOffSet * ((s - sStartInnerSurface -

```
c_MainFlareLength) / c_SwxFlareLength) ^ 2
```

Else
$y=0$
End If
SwxFlare $=\mathrm{y}$
End Function
Function MainFlare(ByVal s As Double) As Double
Dim y As Double
If s >= sStartInnerSurface And s < sStartInnerSurface +
c_MainFlareLength Then
y = c_mainFlareOffSet * ((sStartInnerSurface + c_MainFlareLength

- s) / c_MainFlareLength) ^ 2
$\bar{E} 1$ se
$y=0$
End If
MainFlare = y
End Function
Function yTireLocal(ByVal Psi As Double, ByVal yMC As Double, ByVal Yaw As Double, ByVal Roll As Double, ByVal xw As Double, ByVal yw As Double, ByVal zw As Double) As Double
yTireLocal = yMC * Math.Cos(Psi) + Math.Sin(Psi + Yaw) * (xw - c_Xcg)
+ Math.Cos(Psi + Yaw) * (Math. Cos (Roll) * yw - Math.Sin (Roll) * (zw - c_Zcg))
End Function
Function xTireLocal(ByVal Psi As Double, ByVal yMC As Double, ByVal Yaw As Double, ByVal Roll As Double, ByVal xw As Double, ByVal yw As Double, ByVal zw As Double) As Double
xTireLocal $=-y M C$ * Math.Sin(Psi) + Math.Cos(Psi + Yaw) * (xw c Xcg) - Math.Sin(Psi + Yaw) * (Math.Cos(Roll) * yw - Math.Sin(Roll) * (zw c_Zcg))

End Function

Function yCL(ByVal x As Double) 'y at centerline
Dim sg1, xg1, sg2, xg2, sAns, PsiAns, cosPsi As Double
If $x<=0$ Then
$\mathrm{yCL}=0$
ElseIf $\mathrm{x}<\mathrm{x} 1$ Then
sg1 $=x$
xg1 = sg1 * (1 - (c_J2V3 * sg1 ^ 2) ^ 2 / 10)
$\mathrm{sg} 2=\mathrm{sg} 1+\mathrm{ds}$
$\mathrm{xg} 2=\operatorname{sg} 2{ }^{\star}(1-(\mathrm{c}-\mathrm{J} 2 \mathrm{~V} 3 \star \operatorname{sg} 2 \wedge 2) \wedge 2 / 10)$
sAns $=s g 2+d s *(\bar{x}-x g 2) /(x g 2-x g 1)$
PsiAns $=$ C_J2V3 * sAns ^ 2
$\mathrm{yCL}=(1-\operatorname{PsiAns} \wedge 2 / 14) *$ sAns * PsiAns / 3
Else

$\mathrm{yCL}=\mathrm{yc}-\mathrm{R} * \operatorname{cosPsi}$
End If

End Function
Function cosPsi(ByVal x As Double) As Double
Dim sAns, $x g 1, x g 2, ~ s g 1, ~ s g 2, ~ s i n P s i ~ A s ~ D o u b l e ~$
If $\mathrm{x}<=0$ Then
sinPsi $=0$
Elself $\mathrm{x}<\mathrm{xl}$ Then
sg1 = x
$\mathrm{xg1}=\mathrm{sg1}$ * (1 - (c_J2V3 * sg1 ^ 2) ^ $2 / 10$)
$\operatorname{sg2}=\mathrm{sg} 1+\mathrm{ds}$
$\mathrm{xg} 2=\operatorname{sg} 2 \times\left(1-\left(C_{-} 2 \mathrm{~V} 3 * \operatorname{sg} 2 \wedge 2\right) \wedge 2 / 10\right)$
sAns $=s g 2+d s *(\bar{x}-x g 2) /(x g 2-x g 1)$
sinPsi $=$ Math.Sin (c_J2V3 * sAns ^ 2)
Else
sinPsi $=(x-x C) / R$
End If
cosPsi $=$ Math.Sqrt(1 - sinPsi ^ 2)

End Function
Function SideTireForce (ByVal k As Double, ByVal Defl As Double, ByVal previousD As Double, ByVal ppreviousD As Double, ByRef MaxD As Double) As Double

```
    Dim kr As Double
    If Defl > 0 Then
            If Defl >= previousD Then
            SideTireForce = k * Defl ^ 1.5
        Else
            If previousD >= ppreviousD Then
                    MaxD = previousD
            End If
            If MaxD > 0 Then
                    kr = k / MaxD ^ (c_Beta - 1.5)
                    SideTireForce = kr`* Defl ^ c Beta
                Else
                    SideTireForce = 0
                End If
        End If
    Else
        SideTireForce = 0
    End If
```

```
    End Function
    Function MainTireForce(ByVal k As Double, ByVal Defl As Double, ByVal
previousD As Double, ByVal ppreviousD As Double, ByRef MaxD As Double) As
Double
    Dim kr As Double
    If Defl > O Then
                If Defl >= previousD Then
                    MainTireForce = k * Defl
            Else
                If previousD >= ppreviousD Then
                    MaxD = previousD
                End If
                If MaxD > 0 Then
                    kr = k / MaxD ^ (c_Gamma - 1)
                    MainTireForce = kr * Defl ^ c_Gamma
                Else
                    Stop
                    MainTireForce = 0
                End If
            End If
        Else
            MainTireForce = 0
            End If
    End Function
    Function Curvature() As Double
        If s < O Then
            Curvature = 0
        ElseIf s < sl Then
            Curvature = c_Jn * s / c_Speed ^ 3
        Else
            Curvature = 1 / R
        End If
    End Function
    Private Sub Outline_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Outline.Click
        RunSurface()
    End Sub
    Private Sub Button1 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles RunDynamics.Click
        LateralMotion()
    End Sub
    Private Sub Quit_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnQuit.Click
            Me.Close()
    End Sub
End Class
```


[^0]: ${ }^{1}$ No Appendix G in the paper.

[^1]: ${ }^{2}$ They may be the new airless tires that have the same properties as pneumatic tires.

