

Wayside Power & Distribution

> San Jose State University Charles W. Davidson College of Engineering ME195B Senior Design Project I- Section 04 Professor Furman May 8, 2020

Aryamitra Bake (Melody), Shane Sharp, Reynaldo Jahja, Waylon Chan, Alex Ng

Meet the Wayside Team!

Shane Sharp (ME Design, Fabrication)

Alex Ng (ME Design, Fabrication)

Waylon Chan (Electrical, Prototyping)

Melody Bake (Electrical, Prototyping)

Reynaldo Jahja (ME Design, Drafter)

Alex

What is Superway?

Climate change and traffic congestion must be resolved

Data Source: <u>https://www.sanjoseca.gov/home/showdocument?id=22093</u>

SPARTAN Superway utilizes renewable energy and relieves traffic congestion

Source: <u>sites.google.com</u>

SPARTAN Superway utilizes renewable energy and relieves traffic congestion

Rotterdam Shuttle

Source: https://transweb.sjsu.edu/sites/default/files/1227-automated-transit-networks.pd

Goal of Wayside Power

Today's rails use costly and inefficient wayside power systems that span the entirety of guideways

Full Scale Spe	Full Scale Specifications		
Description	Specification	Units	
Track length	30	ft	
Velocity of pod car	3	ft/s	
Current output of third rail	33.3	A	
Supply voltage	36	V	
Current collector shoe force	5-7.5	lbf	
Shoe Spring Constant	6.8	lb/in	

Literature Review

HEBENTHAL Pub. No.: US 2013/0213754 A1 Pub. Date: Aug. 22, 2013

DUPRAT et al . Pub . No . : US 2019 / 0001823 A1 Pub . Date : Jan . 3 , 2019

Sliding wear behavior is crucial to our electrical design

Voltage drop increases as current density increases

Voltage drop decreases as contact pressure increases

(Zhao, et al., 2020)

This is our overall electrical schematic

Taking a closer look at the 2D schematic

Wayside Part Number	Item Name	Description	Qty
E2	Arduino		1
	Force		
S3	Sensor	one on each shoe	2
S4	Driver	Drives actuator	2
B1	Bus Bar	Collects and Distributes cables	2

Taking a closer look at the 2D schematic

Wayside Part Number	Item Name	Description	Qty
S1	Current Sensor	before motor	1
S2	Voltage Sensor	in parallel with + & - side of shoe	1
B1	Bus Bar	Collects and Distributes cables	2
F1	Fuse	Protects sensors	2

Waylon

Analysis and Testing

Solidworks animation to demonstrate how the test bogie run on the wooden rail

Solidworks animation to demonstrate how the contact between the shoe and the rail

Reynaldo

Max displacement: 0.5208 mm

Reynaldo

Min Factor of Safety (FOS): 31

Max von Mises stress: 36.85 MPa Max Displacement: 0.076 mm

Reynaldo

Min Factor of Safety (FOS): 5.6

The team successfully completed and tested a tabletop setup

The chart below reports the voltage and current at each segment of the third rail power distribution system.

	Desc.	Voltage (V)	Current (A)
1	IN	5.05	
2	OUT	5.4	
3	Rail	11.73	1.3
4	Shoe	9.28	1.4

Conclusions and Findings

Rigorous design and revision work led the team to successfully achieving the desired design specifications

Evolution of Design

Beginning and completing design work earlier would significantly improve the wayside power project

Future Superway engineers should improve the current wayside power design and build the physical project

The wayside power system will reduce the economic cost, environmental cost, and geographical restrictions of city transportation

The Wayside Power & Distribution is the economically and environmentally friendly power solution for the SPARTAN Superway

Special thanks to:

SWENSON

-Mike Perkins -App. Specialist Admir Karabegovic

Special thanks to:

Professor Burford Furman Ron Swenson Eric Hagstrom Chuong Nguyen Ryan Tong Husain Bootwala

Spatial Envelope

Design Trial and Error

Variance in Shoe Pressure

7 lb/in Springs

+/- 1/16 inch tolerance in vertical assembly

gives a +/- 0.44 lb/in variance

Industrial D.C. App	lications	4-6 P.	S.I.
WRIM & Sync. Rings		3.5 - 4.5 P.S.I.	
High Speed Turbin Soft Graphite Gra	e Rings, ades	2.5 -	3.5 P.S.I.
Metal Graphite Bru	ishes	4.5 -	5.5 P.S.I.
FHP Brushes		4-7 P.	.S.I.
Traction Brushes		5-8 P.S.I.	
For brushes with than 25 degrees,	top and b add an ei	ottom an dra .5 —	igles greater - 1 P.S.I.
	Measur	Measured Force (lbs.)	
Spring (P.S.I.) Pressure =	Brush Thickne	ss X	Brush Width

