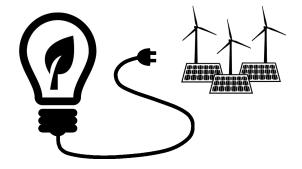
DESIGN OF ENERGY STORAGE UNIT FOR THE SPARTAN SUPERWAY TRANSPORTATION NETWORK

ME295A May 14, 2020

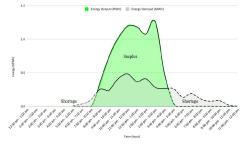
Committee: Dr. Burford Furman, Mr. James Mokri, and Mr. Ron Swenson


By: Carlos Franco

PERSONAL BACKGROUND

SJSU SAN JOSÉ STATE UNIVERSITY

THIS PRESENTATION FOCUSES ON CURRENT RESEARCH AND ANALYSIS FOR STORAGE UNIT DESIGN OPTIONS

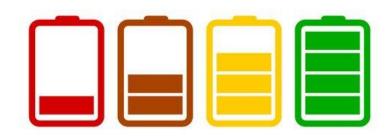


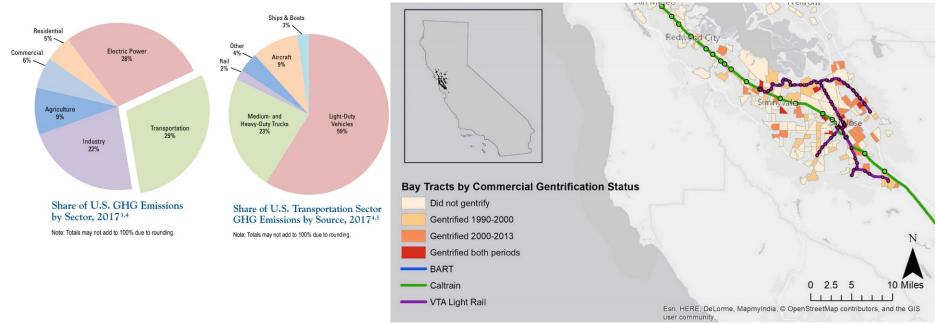
Introduction / Background

Methodology

Objectives

Results / Summary


THE SPARTAN SUPERWAY IS AN OPPORTUNITY REDUCE INIMICAL IMPACTS OF MODERN TRANSPORTATION METHODS



Source: / Furman, B., & Swenson, R. (2019). Solar Powered Automated Rapid Transit Ascendant Network. Retrieved from https://www.inist.org/library/2019-10-14.FurmanSwenson.SPARTAN.SJSU_WhitePaper.pdf / Fogelquist, J. B. (2019). Computational Aid for Designing PV Canopy for Solar-Powered Transit. San Jose, CA: San Jose State University.

PROPOSE DESIGN FOR ENERGY STORAGE UNIT THAT CAN BE DEPLOYED FOR SUPERWAY NETWORK

TRANSPORTATION SECTOR HAS CRITICAL IMPLICATIONS ON THE ENVIRONMENT AND PUBLIC SAFETY

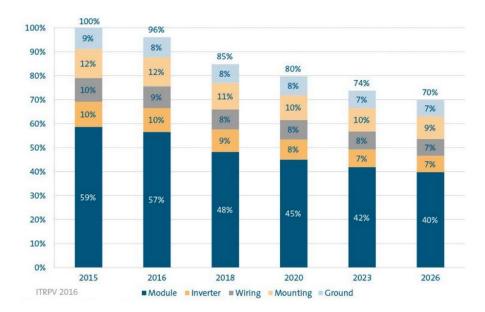
Source: U.S. Environmental Protection Agency, Office of Transportation and Air Quality. (2019, June). Fast facts: U.S. Transportation Sector Greenhouse Gas Emissions 1990-2017. Retrieved from https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100WUHR.pdf / González, S., Loukaitou-Sideris, A., & Chapple, K. (2019). Transit neighborhoods, commercial gentrification, and traffic crashes: Exploring the linkages in Los Angeles and the Bay Area Journal of Transpot Geography, 77, 79-89.

THE SPARTAN SUPERWAY IS CONSIDERED AN AUTOMATIC TRANSIT NETWORK

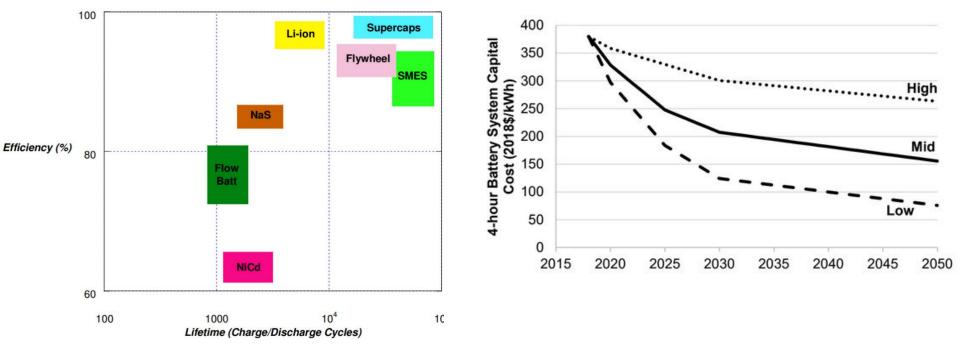
PRT Morgantown, West Virginia

ParkShuttle, Netherlands

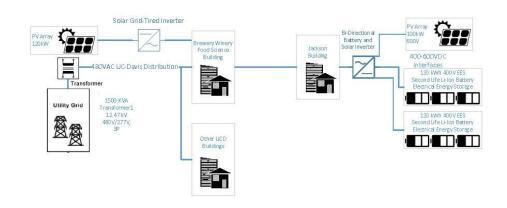
PRT, Madagascar


Shuttle, London

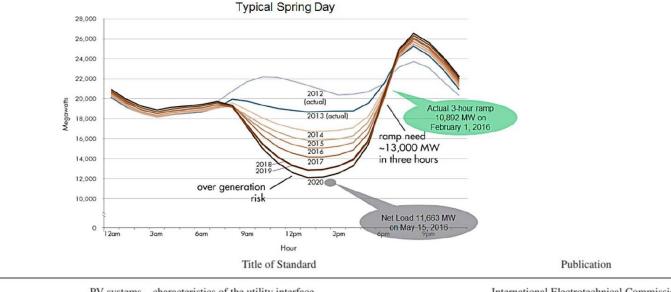
PRT, South Korea


MEGAWATT AND GIGAWATT ARRAYS ARE BECOMING MORE COMMON WHILE SYSTEMS SHOW DECREASING COSTS

V Cell Technology Band-gap [eV]		Manufacturing Processes	Efficiency Record [%]		
Crystalline Silicon					
Mono-crystalline	1.11	Cz-Si, float-zone, BST	27.6 (26.1) ^a		
Poly-crystalline	1.11	BCG, block-casting	22.3		
HIT	1.11	Deposition	26.6		
Micro	1.11	PECVD, HWCVD	21.2		
Thin-film					
CIGS	1.7	scrprint, coat, MOCVD	23.3 (22.9) ^a		
CdTe	1.5	sputter., HVE, MOCVD	22.1		
Amorphous Si:H	1.5-1.8	PECVD	14		
GaAs	1.42	VGF, BST, LEC, MOCVD	30.5 (29.1) ^a		
Multi-junction	multiple	MOCVD, mech stacking	46		
Emerging		Au			
Organic	1-4	Roll-to-roll mfg.	15.6		
Dye-sensitized	≈3.2	Roll-printing	11.9		
Perovskite	≈1.5	spin-coat, scrprint, VD	28 (24.2) ^a		


Source: Shubbak, M. H. (2019). Advances in solar photovoltaics: Technology review and patent trends. Science Direct, 1-5. / Trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from Trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from Trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved from trube, J. (2016). International Technology Roadmap for Photovoltaic. Retrieved for Photovoltaic. Retrieved for Photovoltaic. Retrieved for Photovoltaic. Retri

LITHIUM TECHNOLOGIES SHOW POTENTIAL FOR STORAGE SYSTEMS WHILE SYSTEMS SHOW DECREASING COSTS


Source: Koohi-Fayegh, S., & Rosen, M. (2020). A review of energy storage types, applications and recent developments. Science Direct, 27, 1-23. / Cole, W., & Frazier, A. W. (2019). Cost Projections for Utility-Scale Battery Storage. Golden, CO: National Renewable Energy Laboratory.

UTILITY-SCALE SYSTEMS ARE USING LITHIUM BATTERIES

THE GRID AND STORAGE SYSTEMS CAN WORK TOGETHER BY FOLLOWING STANDARDS

IEC 61727-2004 IEEE Std 1547TM-2003 (R2008) (including amendment IEEE 1547a-2014) IEEE Std 929-2000 Rule 21-2014

Standard No.

PV systems—characteristics of the utility interface IEEE Standard for interconnecting DRs with electric power systems

Recommended practice for utility interface of PV systems Generating facility interconnections International Electrotechnical Commission The Institute of Electrical and Electronics Engineers

The Institute of Electrical and Electronics Engineers California of America

Source: CAISO. (2016). California ISO fast facts. Folsom, CA. / Wu, Y.-K., Lin, J.-H., & Lin, H.-J. (2017). Standards and Guidelines for Grid-Connected Photovoltaic Generation Systems: A Review and Comparison. IEEE Transactions on Industry Applications, 53(4), 3205-3215.

TRANSIT ENERGY EQUATION AND COMPUTER MODEL TO DETERMINE ENERGY DEMAND OF SYSTEM

$$t_s = t_D + \frac{D_s}{V_L} + \frac{V_L}{a_m} + 1$$

$$E(t_{s}) = \frac{1}{\bar{\eta}_{m}} \left\{ \left(1 - \eta_{regen}\right) N_{T} \frac{m_{v} V_{L}^{2}}{2} + \frac{1}{2} \rho_{air} C_{D} A_{v} \left[\left(V_{L}^{2} + \langle V_{w}^{2} \rangle\right) D_{s} - \frac{V_{L}^{4}}{2a_{m}} \right] + N_{T} m_{v} \left[k_{srr} \frac{C_{srr} g D_{s}}{R_{w}} + C_{drr} V_{L} \left(D_{s} - \frac{V_{L}^{2}}{3a_{m}} \right) + \Delta h_{avg} g \right] \right\} + N_{T} P_{aux} t_{s}$$

Vehicle Hourly Demand Vehicle Number Hourly System Demand

$$E_{vhd} = \frac{E_{ahd}}{N_v} \longrightarrow N_{vn} = \frac{N_{sp}}{N_p} \longrightarrow \frac{E_{hsd}}{E_{hsd}} = N_{vn}E_{vhd}$$

HOURLY ARRAY POWER OUTPUT EQUATION AND COMPUTER MODEL TO DETERMINE PV ENERGY SUPPLY

$$P_{A,h} = \eta_{elec} \sum_{N_{sub}} (P_{mod,un,h} N_{un,h} + P_{mod,sh,h} N_{sh,h})$$

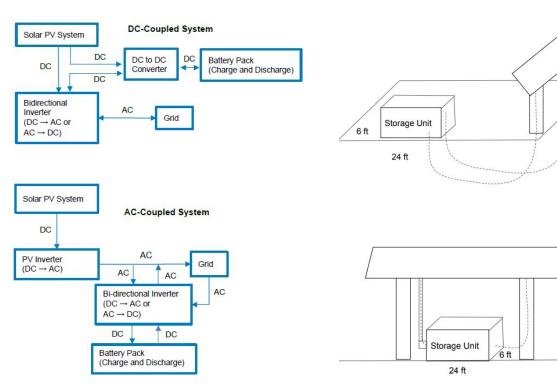
 $\eta_{elec} = \eta_{inv} \eta_{wire} \eta_{con} \eta_{mis}$

System Hourly
Power Output
$$\rightarrow P_{sys,h} = \sum_{N_A} P_{A,h}$$

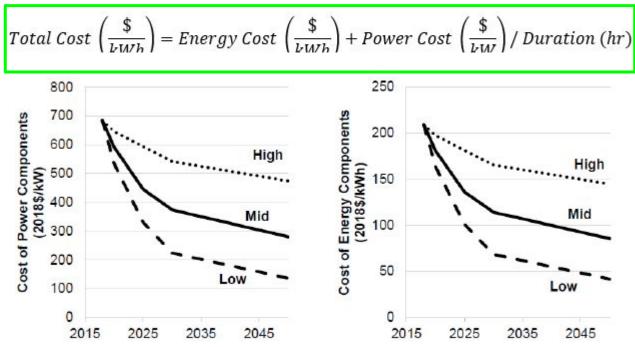
BATTERY SIZING CALCULATIONS ACCOUNTING FOR INEFFICIENCIES AND SAFETY FACTOR

$$E_{td} = \Sigma E_{hsd}$$

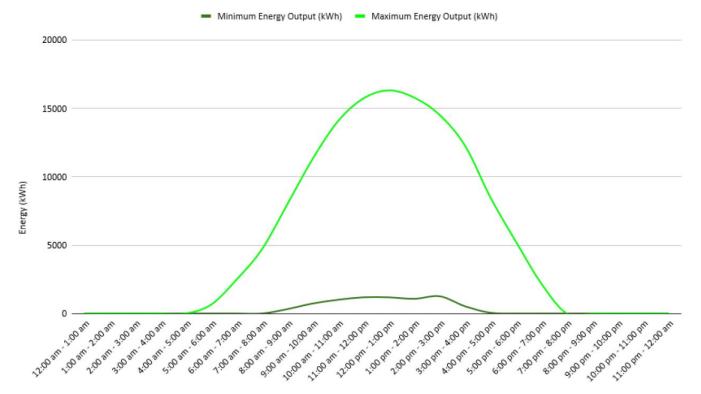
$$E_{ts} = \Sigma P_{sys,h}$$


$$E_{tea} = E_{ts} - E_{td}$$

$$L_B = \frac{E_{tea}}{\eta_{inv} n_{wir}} \longrightarrow X \ 1.25 \ \text{Factor}$$

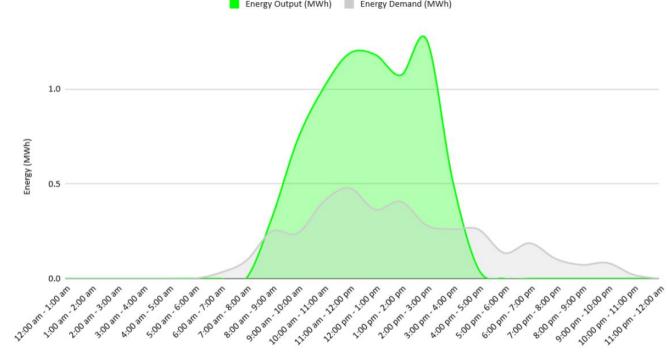

SEARCHING FOR DESIGN AND LAYOUT OPTIONS

APPROXIMATING PROJECTED COST TRENDS FOR THE STORAGE CAPACITY NEEDED

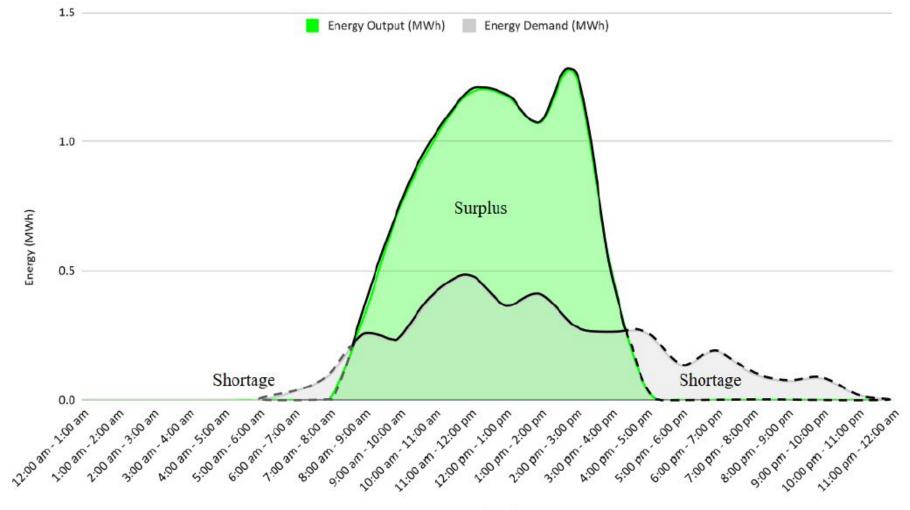

VEHICLE HOURLY DEMAND WAS CALCULATED TO 10.4 KWH

System and Route Characteristics				
Vehicle Mass (kg)	1900			
Vehicle Frontal Area (m ²)	4			
Wheel Radius (m)	0.1524			
Static Rolling Resistance Coefficient (m)	0.057			
Drag Coefficient	0.51			
Average Electric Motor Efficiency	0.85			
Regenerative Braking Efficiency	0.3			
Auxiliary Power Demand (W)	3500			
Line Speed (m/s)	13.4			
Headway (s)	5			
Dwell Time (s)	20			
Average Elevation Change (m)	0			
Number of Vehicles	155			
Number of Stations	14			
Route Length (km)	14.9			
Average Station Distance	1.49			
Average Trip Duration	2.29			

Yearly Demand 14.1 GWh


Average Vehicle Efficiency .27 kWh / km

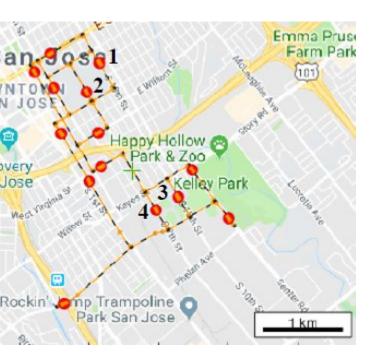
System power supply was 7.3 MW for lowest generating day of the year


Time (hour)

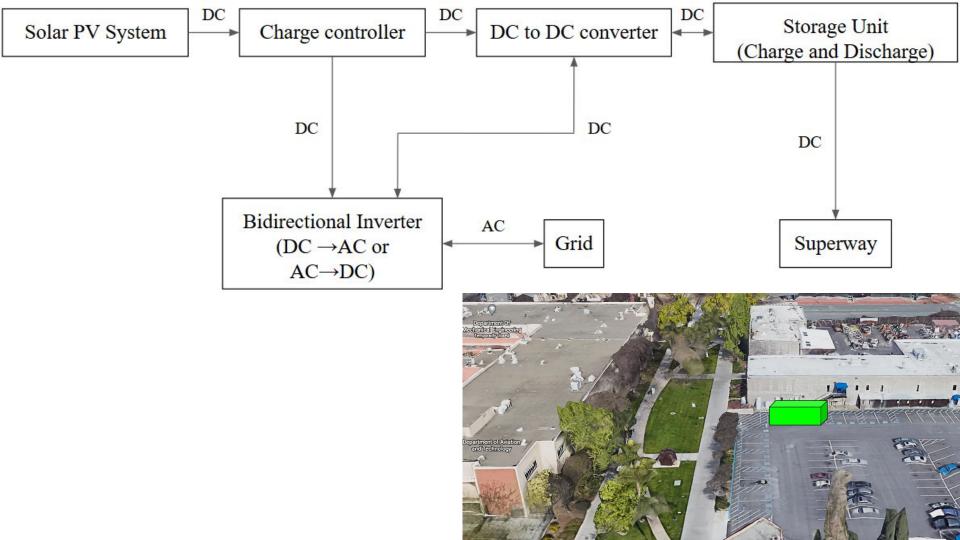
STORAGE SIZE NEEDED TO OPERATE SYSTEM ON STORED ENERGY CALCULATED TO 4.97 MWH (ONE DAY) / 9.95 MWH (TWO DAYS)

Time (hour)

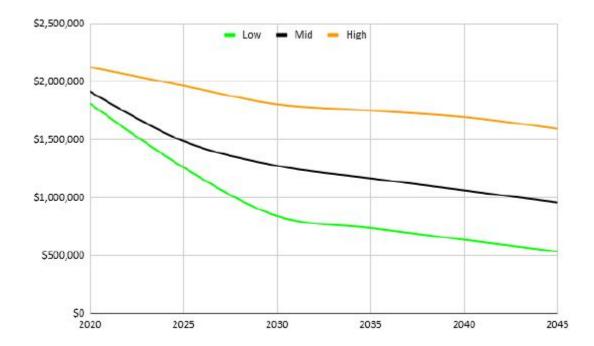
	Time (hour)	Passengers	Vehicles Needed	Energy Demand (kWh)			Time (hour)	Passengers	Vehicles Needed	Energy Demand (kWh)
1	12:00 am - 1:00 am	0	0	0		1	12:00 am - 1:00 am	0	0	0
2	1:00 am - 2:00 am	0	0	0		2	1:00 am - 2:00 am	0	0	0
3	2:00 am - 3:00 am	0	0	0		3	2:00 am - 3:00 am	0	0	0
	3:00 am - 4:00 am	0	0	0		4	3:00 am - 4:00 am	0	0	0
5	4:00 am - 5:00 am	0	0	0		5	4:00 am - 5:00 am	0	0	0
6	5:00 am - 6:00 am	0	0	0	1	6	5:00 am - 6:00 am	0	0	0
7	6:00 am - 7:00 am	4	1	10.40		7	6:00 am - 7:00 am	15	3	31.20
8	7:00 am - 8:00 am	16	3	31.20	_	8	7:00 am - 8:00 am	50	9	93.61
8	8:00 am - 9:00 am	169	29	301.64	Busy)	9	8:00 am - 9:00 am	142	24	249.63
10	9:00 am - 10:00 am	56	10	104.01	st B	10	9:00 am - 10:00 am	134	23	239.23
10 11	10:00 am - 11:00 am	147	25	260.04	(Most	11	10:00 am - 11:00 am	232	39	405.66
12	11:00 am - 12:00 pm	144	24	249.63	2019 (12	11:00 am - 12:00 pm	272	46	478.47
	12:00 pm - 1:00 pm	89	15	156.02		13	12:00 pm - 1:00 pm	208	35	364.05
14	1:00 pm - 2:00 pm	132	22	228.83	V 8,	14	1:00 pm - 2:00 pm	229	39	405.66
15 16	2:00 pm - 3:00 pm	132	22	228.83	ruary	15	2:00 pm - 3:00 pm	160	27	280.84
16	3:00 pm - 4:00 pm	47	8	83.21	Febr	16	3:00 pm - 4:00 pm	147	25	260.04
17	4:00 pm - 5:00 pm	101	17	176.82	Ľ	17	4:00 pm - 5:00 pm	146	25	260.04
18	5:00 pm - 6:00 pm	92	16	166.42		18	5:00 pm - 6:00 pm	76	13	135.22
19	6:00 pm - 7:00 pm	55	10	104.01		19	6:00 pm - 7:00 pm	104	18	187.23
20	7:00 pm - 8:00 pm	49	9	93.61		20	7:00 pm - 8:00 pm	55	10	104.01
21	8:00 pm - 9:00 pm	28	5	52.01		21	8:00 pm - 9:00 pm	37	7	72.81
22	9:00 pm - 10:00 pm	25	5	52.01		22	9:00 pm - 10:00 pm	43	8	83.21
23	10:00 pm - 11:00 pm	8	2	20.80		23	10:00 pm - 11:00 pm	7	2	20.80
24	11:00 pm - 12:00 am	0	0	0		24	11:00 pm - 12:00 am	0	0	0



Time (hour)


DIVERSE DESIGN OPTIONS AVAILABLE COMMERCIALLY FOR THE SYSTEM

Specifications	Tesla Megapack	Oilfield Instrumentation Model 20-2			
Storage Capacity	3 MWh	N/A			
Dimensions	23 ft 5 in x 5 ft 3 in x ~ 8 ft	20 ft x 8 ft x ~ 8 ft			
Components / Features	Battery modules, bi-directional inverters, thermal management system, AC main breaker, Controls	Combustion resistant materials, thermostat, HVAC controls, humdity indicator, audible and visual strobe warnings, and electric panels			
Assembly Required	No	Yes			
Applications	Renewable smoothing, T&D investment deferral, voltage support, capacity support, microgrid, market participacttion, and frequency regulation	Lithium battery storage and related			
Support	Team helps to identify custom site requirements and design a solution for application	Can contact for custom project options			
Weight	N/A	13,800 lbs			
Full Distribution	0.24	N/A			
Partial Distribution	1	N/A			
	Tesla Powerpack	Tesla Powerwall			
		7.25LA			
Storage Capacity	232 kWh	13.5 kWh			
Dimensions	41.1 in x 54.9 in x 86.2 in (inverter - 41.1 in x 54.9 in. x 86.2 in)	45.3 in x 29.6 in x 5.75 in			
Components / Features	16 battery pods, DC-DC converter, cell monitoring sensors, thermal control system (liquid cooling)	Connection point, liquid cooling, inverter, battery pack			
Assembly Required	No	No			
Applications	Outdoor rated, peak shaving, emergency backup, load shifting, demand response, microgrid, power production, grid reliability	Weatherproof, solar self-consumption, back-up power, time-based control, off-grid capabilities			
Support	Company support, certifications	Company support, 10 year warranty, certifications			
Weight	4,847 lbs (inverter - 2,470 lbs)	251.3 lbs			
Full Distribution	4	53			
Partial Distribution	11	185			


FOUR POSSIBLE LOCATIONS AVAILABLE FOR UNITS NEXT TO STATIONS



PROJECTED COST OF ENERGY STORAGE SYSTEM IS EXPECTED TO DECREASE IN THE UPCOMING YEARS

THERE ARE SOLUTIONS OUT THERE

